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Abstract

Recent advancements in unified vision-language models (VLMs), which integrate
both visual understanding and generation capabilities, have attracted significant
attention. The underlying hypothesis is that a unified architecture with mixed
training on both understanding and generation tasks can enable mutual enhance-
ment between understanding and generation. However, this hypothesis remains
underexplored in prior works on unified VLMs. To address this gap, this paper
systematically investigates the generalization across understanding and generation
tasks in unified VLMs. Specifically, we design a dataset closely aligned with real-
world scenarios to facilitate extensive experiments and quantitative evaluations.
We evaluate multiple unified VLM architectures to validate our findings. Our key
findings are as follows. First, unified VLMs trained with mixed data exhibit mutual
benefits in understanding and generation tasks across various architectures, and this
mutual benefits can scale up with increased data. Second, better alignment between
multimodal input and output spaces will lead to better generalization. Third, the
knowledge acquired during generation tasks can transfer to understanding tasks,
and this cross-task generalization occurs within the base language model, beyond
modality adapters. Our findings underscore the critical necessity of unifying un-
derstanding and generation in VLMs, offering valuable insights for the design and
optimization of unified VLMs.

1 Introduction

In recent years, Vision-Language Models(VLMs) has emerged as a transformative paradigm in
artificial intelligence. These models are typically categorized into two distinct types: understanding-
only VLMs [Chen et al., [2024al Liu et al) 2023 Wang et al. [2024a]], which focus mainly on
comprehension and perception tasks like visual question answering (VQA) and image captioning;
and generation-only VLMs [Betker et al.|[2023|, [Podell et al., 2023 Tian et al.l 20244a]], which excel
in tasks like image generation and image editing. Although these specialized models have achieved
remarkable success in their respective domains, recent research has increasingly shifted toward the
development of unified VLMs [Chen et al., [2025| Xie et al., |2024}, Zhou et al.| 2024, /Wang et al.,
2024b, [Team, 2024]]. These unified models aim to integrate both understanding and generation
capabilities within a single framework.

The intuitive motivation for developing unified VLMs stems from the hypothesis that a shared archi-
tecture and mixed training across understanding and generation tasks can foster mutual benefits. As
Richard Feynman famously stated, “What I cannot create, I do not understand.” This philosophy un-
derscores the potential synergy between understanding and generation. Specifically, it is hypothesized
that the knowledge acquired through understanding tasks can be leveraged to enhance performance

*During internship at Microsoft.

Preprint. Under review.


https://github.com/MajorDavidZhang/Generalization_unified_VLM.git
https://arxiv.org/abs/2505.23043v1

on generation tasks. For instance, spatial concepts learned during image caption tasks may assist the
model in generating images correctly following complex text instructions. Conversely, successful
execution of generation tasks may hinges on the model’s ability to comprehend the underlying
concepts in textual instructions. This process, in turn, can reinforce the model’s understanding of
these concepts. For example, generating images with precise spatial relationships may deepen the
model’s grasp of spatial concepts, thereby improving its performance on related understanding tasks.

Despite the growing interest in unified VLMs,
most existing works have predominantly fo-
cused on architectural innovations or training
strategies. However, a critical question remains
largely unexplored: Are unified vision-language
models (VLMs) truly necessary when separate
models for understanding and generation al-
ready excel in their respective domains? Cur-
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To address this gap, this paper systematically

investigates the generalization across understanding and generation in unified VLMs. First, to
facilitate extensive experimentation, we carefully design a synthetic, easy-to-control image-text
dataset aligned with real-world scenarios. This dataset includes both vision understanding data (e.g.,
visual question answering (VQA) and image captioning) and vision generation data (e.g., text-to-
image generation). We then evaluate and analyze multiple unified VLM architectures, covering a
wide range of prior works. Our key findings are as follows:

First, unified VLMs exhibit mutual benefits between understanding and generation tasks. Specifically,
Specifically, we compare the performance of unified VLMs trained with mixed tasks (combining
understanding and generation) against task-specific models trained solely on either understanding
or generation tasks using the same set of data. The results show that unified VLMs consistently
outperform their task-specific counterparts, as illustrated in Figure[I] To further explore these mutual
benefits, we conduct experiments by fixing the amount of understanding data while increasing the
generation data, and vice versa. We find that the mutual benefits scale up with the increase in training
data, highlighting the synergy between understanding and generation.

Second, better alignment between vision input and output spaces leads to improved generalization.
Our evaluations reveal that unified VLMs with well-aligned vision input and output spaces exhibit
more pronounced mutual benefits, as shown in Figure m To validate this observation, we introduce
artificial distortions to disrupt the alignment between the vision input and output spaces. The results
demonstrate that such disruptions significantly reduce the mutual benefits in unified VLMs, while task-
specific models remain largely unaffected. These findings underscore the critical role of alignment
between vision input and output spaces in facilitating cross-task generalization.

Third, knowledge acquired during generation tasks can transfer to understanding tasks. Lever-
aging our carefully designed synthetic dataset, we simulate scenarios where specific knowledge
is underrepresented in the understanding data but remains present in the generation data. While
understanding-only models struggle to learn this knowledge, unified VLMs successfully acquire it
and achieve near-perfect accuracy on related tasks. This empirically demonstrates the transfer of
knowledge from generation tasks to understanding tasks. Further analysis reveals that this knowledge
transfer occurs primarily within the base language model (LLM), beyond the modality adapters



Through these findings, we highlight the necessity of unifying understanding and generation within a
single framework, as evidenced by the mutual benefits observed in unified VLMs. Additionally, we
reveal the potential for scaling up vision-language models through the integration of understanding
and generation tasks. We hope that our experimental pipeline will facilitate future research in this
area and that our insights provide valuable guidance for the design and optimization of unified VLMs.

2 Related Work

Unified Vision-Language Models. Recent efforts have aimed to build unified VLMs that seamlessly
support both understanding and generation across vision and language modalities. A popular direction
extends autoregressive language modeling to both text and image tokens [Wu et al., [2024b}, [Wang
et al.| [2024b]], enabling a single transformer to predict the next token regardless of modality. Models
such as LWM [Liu et al., |2024]] and Chameleon [Team, 2024] adopt discrete VQ-based image
tokenizers [Gafni et al.,[2022], allowing vision-language inputs to be encoded and decoded within a
unified autoregressive framework. Beyond token-based approaches, diffusion models have recently
emerged as a powerful tool for vision generation. A group of works treats diffusion as an external
module: an autoregressive LLM first generates latent codes, which are then passed to a pretrained
diffusion model to produce the final image [Dong et al.,|2023| Tian et al.,|2024b]. Transfusion [Zhou
et al., 2024]] and Showo [Xie et al., [2024]] take a hybrid route, integrating continuous or discrete
diffusion for images with autoregressive text prediction, offering greater flexibility for mixed-modal
generation. Alternative strategies explore architectural innovations to support dual capabilities. Janus-
pro [Chen et al., 2025[] decouples vision encoders into separate pathways to balance understanding and
generation tasks. Dual Diffusion [Li et al.}[2024] proposes using two independent diffusion processes
for the two capabilities, while Liquid [Wu et al.| [2024a]] aligns visual and textual representations in a
shared space for unified token-level modeling.

Generalization Across Generation and Understanding. While unified MLLMs have demonstrated
promising performance in both understanding and generation tasks, their purported advantage of
mutual enhancement across modalities remains an open question. Existing studies have largely
focused on model architecture or training efficiency without systematically evaluating the gener-
alization capability across understanding and generation paradigms [Team, 2024} Sun et al.| 2023]
Wang et al., 2024b, |(Chen et al.| [2025]]. Although some recent works have begun to explore this
intersection, they reach inconsistent conclusions, highlighting critical gaps. Tong et al.|[2024] observe
consistent mutual benefits in a unified VLM that uses SigLIP [Zhai et al., 2023]] as the vision encoder
for understanding tasks and generates SigLIP tokens, which are used as conditions for a diffusion
model to generate images. They also find that these mutual benefits scale with increased data. In
contrast,[Wu et al.| [2024a] discuss the impairment of both understanding and generation tasks in a
unified VLM that uses VQ-VAE [Van Den Oord et al.,2017] as the vision encoder for understanding
tasks and generates VQ-VAE tokens. Their experiments reveal that this impairment diminishes as
the model size increases. Similarly, |Chen et al.|[2025]] claim that architectural disentanglement of
vision understanding and generation can alleviate conflicts between these tasks. Using SigLIP as the
vision encoder and generating VQ-VAE tokens for image generation tasks, their experiments reveal
inconsistent mutual effects: in some tasks, understanding and generation benefit each other, while
in others, they harm one another. Despite these initial efforts, the above analyses are restricted to
specific unified VLM architectures, and none provide a comprehensive evaluation of bidirectional
generalization across understanding and generation tasks across different unified VLM designs.
Moreover, these studies are computationally intensive and difficult to reproduce. Our work addresses
this gap by offering a systematic study across various unified VLMs, leveraging carefully curated
datasets and finely controlled, computationally friendly experiments.

3 Preliminaries

3.1 Synthetic Dataset

To ensure precise control over the dataset, facilitate flexible adjustments to its distribution for
analysis, and reduce computational overhead while maintaining evaluation efficiency, we design a
synthetic Smart Watch UI Dataset. This dataset closely mimics real-world scenarios for both image
understanding and generation tasks, as illustrated in Figure 2} Each image in the dataset is controlled
by six distinct attributes: time, weather, weather position, battery level, battery position, and watch



face color. Specifically: Time consists of hour, minute, and second values ranging from 0-12, 0-60,
and 0-60, respectively. Weather can take on three states: cloudy, rainy, or sunny. Battery level ranges
from O to 100. Both weather position and battery position can be top-left, top-right, bottom-left, or
bottom-right. To generate each data sample, we first define the ground truth for the six attributes. A
rule-based generator then creates the corresponding image based on these ground truth attributes,
ensuring accurate pairing between image and text data. The watch face color is randomly sampled
and not included in any text data, allowing a single text ground truth to correspond to multiple images.
This design simulates real-world scenarios where diverse visual variations may arise from the same
textual description, as shown in Figures[2ajand[2b] For understanding tasks, we generate VQA (Visual
Question Answering) and caption data using diverse QA templates. Each VQA question focuses
on one attribute, with equal appearance probabilities for the five attributes. For caption data, each
caption includes 1-5 attributes, with time always present and the other four appearing independently
with a probability of 0.5. For generation tasks, we create instructions following the caption data using
different templates. We use a combination of 60K VQA data, 60K caption data and 60k text-to-image
generation data as the default training dataset.

[ ]51% m]51% 4% 4%
(a) Samples from the Smart Watch UI Dataset showing ~ (b) Samples from the Smart Watch UI Dataset showing
time 02:07:00, cloudy weather displayed at the top-  time 06:49:15, sunny weather displayed at the top-

right, and 51% battery displayed at the bottom-left. right, and 14% battery displayed at the bottom-right.

Figure 2: Samples from the Smart Watch UI Dataset with different ground truth attributes.

3.2 Evaluation

The evaluation of understanding tasks is conducted in the VQA format. We compute the VQA
accuracy score across four key attributes: time, weather, position, and battery. For weather and
position, we use matching-based evaluation. For time and battery, given their more continuous value
ranges and the model’s progressive learning nature, simple matching-based evaluation cannot fully
capture the model’s ability. Thus, we compute time accuracy as 1 — < — “mm — =22« and battery
accuracy as 1 — 552 For generation tasks, we compute the FID score []Heusel et al.,[2017] between
the ground truth images and the generated ones.

3.3 Unified VLMs

In this paper, we primarily focus on LLM-based Unified Vision-Language Models (VLMs). For
image understanding, a pre-trained image encoder first encodes the input image. Subsequently, a
dedicated understanding vision adapter projects the encoded representations from the encoder’s
hidden space to the LLM’s hidden space, transforming them into input vision tokens. These vision
tokens are then combined with text tokens and fed into the LLM. The pre-trained image encoder
can be either a VQ-VAE encoder[Van Den Oord et al.l 2017] or a SigLIP vision encoder
[2023]). For image generation, the LLM generates a special symbol, “<image>,” at the beginning of
the generation process. Upon encountering this symbol, an image generation head is activated instead
of the language modeling head. This image generation head projects the LLM’s output hidden states
into vision tokens. After generating the first vision token, a generation vision adapter maps these
tokens back to the LLM’s input hidden space to enable autoregressive generation. The parameters of
the generation vision adapter can optionally be shared with those of the understanding vision adapter,
depending on whether the input and generated vision tokens reside in the same latent space. The
generated vision tokens may correspond to SigLIP vision embeddings or VQ-VAE tokens.




3.4 Experiment Settings

We evaluate various combinations of VQ-VAE and SigLIP within unified VLMs. The configurations
are as follows:

SigLIP-VQ: SigLIP serves as the vision encoder for the VLM, generating VQ token IDs that are
decoded into real images by the VQ-VAE decoder, similar to Janus|Chen et al.[[2025]].

VQ-VQ: The VQ-VAE encoder acts as the vision encoder for the VLM, generating VQ token IDs that
are decoded into real images by the VQ-VAE decoder, resembling Liquid |Wu et al.|[2024a].

SigLIP-SigLIP: SigLIP is used as the vision encoder for the VLM, generating SigLIP embeddings
akin to MetaMorph Tong et al.|[2024].

VQ-SigLIP: The VQ-VAE encoder serves as the vision encoder for the VLM, generating SigLIP
embeddings. While this configuration is not practical for real-world applications, it serves as a
valuable baseline for comparison in our experiments.

For VQ-VAE, we use vq_ds16_t2i from Sun et al.|[2024], with a resolution of 256 x 256. For
SigLIP, we use SigLIP-base-patch16-224 from Zhai et al.|[2023]], with a resolution of 224 x 224.
For SigLIP, we employ a 2-layer MLP as the vision adapter to project Sigl.IP embeddings into the
LLM hidden space following|Chen et al.|[2025]. For VQ-VAE, we use a single linear layer. In unified
VLMs with aligned input and output vision spaces, we share the parameters of the understanding
vision adapter and generation vision adapter by default to maintain alignment. For the base LLM
in all unified VLMs, we use Vicuna-7B-v1.5 [Peng et al.,|2023] for fair comparison. We adopt a
one-stage training approach to jointly update the vision adapters, image generation head, and LLMs.
By default, we fine-tune the base LLM using Low-Rank Adaptation (LoRA). More details are in the
supplementary materials.

4 Generalization Across Understanding and Generation
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Figure 3: Image understanding and generation performance of VLMs during training. “_g” denotes
generation-only training, and “_u” denotes understanding-only training. Unified VLMs trained
with mixture of understanding and generation data outperform task-specific models trained with
understanding-only or generation-only data.

First, we train the four types of unified VLMs using a mixture of understanding and generation data.
To verify whether unified VLMs can yield mutual benefits between understanding and generation
compared to task-specific models, we compare their performance with models trained solely on
understanding-only or generation-only data. The evaluation results are shown in Figure 3] From
the figure, we observe that all unified VLMs trained with mixed data outperform their task-specific
counterparts. For understanding tasks, SigLIP-SigL.IP and SigLIP-VQ surpass SigLIP_u, while
VQ-VQ and VQ-SigLIP outperform VQ_u. For generation tasks, both SigL.IP-VQ and VQ-VQ
exceed the performance of VQ_g. These results indicate that generalization across understanding
and generation tasks does indeed exist in unified VLMs. Training on both tasks can enhance the
performance of each other, empirically demonstrating the necessity and superiority of unified VLMs
over task-specific models.



4.1 Impact of Distance Between Vision Input and Output Spaces
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Figure 4: Comparison between VLMs with and without vision input space distortion. Vision
input space distortion has little effect on understanding-only VLMs, but significantly decrease the
performance of unified VLMs.

From Figure 3| we observe that unified VLMs with aligned vision input and output spaces tend
to perform better. Specifically, SigLIP-SigLIP outperforms SigLIP-VQ in understanding tasks,
VQ-VQ surpasses VQ-SigLIP in understanding tasks, and VQ-VQ outperforms SigL.IP-VQ in
generation tasks. This discrepancy motivates us to hypothesize that the generalization of knowledge
between generation and understanding is influenced by the distance between the vision input and
output spaces.

To further validate this hypothesis, we introduce a random affine transformation immediately after
the understanding vision adapter to distort the vision input space, making it slightly different from
the vision output space. We carefully ensure that the affine transformation is reversible to avoid
information loss. The results are shown in Figure E} First, the affine transformation has little effect on
the performance of understanding-only VLMs. This guarantees that any performance difference in
unified VLMs with or without the affine transformation arises from the misalignment of the input
and output vision spaces, rather than from the distortion of the input space itself. Based on this,
mixed training with the affine transformation performs worse than without the transformation in
both understanding and generation tasks for both SigLLIP-SigLLIP and VQ-VQ. The performance
degradation is significant, empirically confirming our hypothesis: Understanding can benefit from
generation, but this benefit depends on the alignment between the vision input and output spaces.
This may be because, when the input and output spaces are close or identical, the embeddings of the
same visual concept are similar across understanding (input) and generation (output), facilitating
easier learning. Conversely, when the two spaces are distant, it becomes challenging for the base
LLM to capture the relationship between input and output representations of the same visual concept,
leading to poor generalization.

4.2 Scaling Up with Increased Data

Building on the previous findings, we investigate whether the mutual benefits between understanding
and generation can scale with increased training data. To this end, we expand the dataset in two
directions: (1) fixing the generation data at 60K while increasing the understanding data from O to
120K, 180K, 240K, and 300K; and (2) fixing the understanding data at 120K while increasing the
generation data from 0 to 60K, 90K, 120K, and 180K. The evaluation results are shown in Figure E}

From the results, we observe the following trends: When increasing the amount of understanding
data (with generation data fixed), the performance on generation consistently improves, and the
performance on understanding also shows a clear upward trend, as illustrated in Figure [5a] Similarly,
when increasing the amount of generation data (with understanding data fixed), the performance
on understanding also improves. Specifically, for SigLIP-VQ, the understanding performance
consistently increases, while for VQ-VQ, it shows a similar upward trend, outperforming generation-
only training in all cases. Additionally, the generation performance improves as more generation
data is added, with no evidence of conflict between the two tasks. These findings further validate the
generalization across understanding and generation in unified VLMs. This implies that, in real-world
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Figure 5: Performance of SigL.IP-VQ and VQ-VQ under varying data scales. Only increase the
amount of generation data can boost the performance in understanding tasks, and vice versa.

applications, we can enhance understanding performance through additional generation training and
vice versa, underscoring the necessity of unified VLMs.

Interestingly, our experiments reveal an intriguing observation for SigLIP-VQ: starting from the
same baseline of 60K generation data and 120K understanding data, adding 120K more generation
data achieves a VQA accuracy above 99, which is comparable to adding 180K more understanding
data. This suggests that, in certain scenarios, augmenting generation data can be more efficient than
augmenting understanding data for improving understanding performance. This highlights the great
potential of unified VLMs in leveraging cross-task synergies.

4.3 Knowledge Transfer from Generation to Understanding
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Figure 6: Performance comparison between unified VLMs and understanding-only VLMs, trained on
understanding data biased on the weather attribute. “_u” denotes understanding-only training. “-D”
denotes using separate understanding vision adapter and generation vision adapter.
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Figure 7: Performance comparison between unified VLMs and understanding-only VLMs, trained on
understanding data biased on the battery attribute. “_u” denotes understanding-only training. “-D”
denotes using separate understanding vision adapter and generation vision adapter.



Based on the previous findings that adding generation data can improve understanding performance
(and vice versa), we hypothesize that knowledge learned in one task (e.g., generation) can transfer
to the other task (e.g., understanding) in unified VLMs. Leveraging our easy-to-control synthetic
dataset, we specifically manipulate the appearance of key attributes to test this hypothesis. In this
experiment, we intentionally reduce the occurrence of one attribute in understanding tasks to a very
low level (0 appearances in image captioning data and 0.05 probability of appearance in VQA data),
while maintaining normal generation data. We apply this manipulation to two attributes, weather and
battery, creating two biased datasets: one biased on weather and the other biased on battery. We then
evaluate and compare the performance of understanding-only VLMs with that of unified VLMs. The
results are shown in Figures[6and[7]

As shown in Figure[f] when training on data biased on the weather attribute, both understanding-only
models (VQ_u and SigLIP_u) struggle to identify weather-related information. In contrast, all
unified VLMs trained with mixed data achieve nearly 100% VQA accuracy. Similarly, as shown in
Figure[7] for SigLIP-based VLMs, the unified models significantly outperform their understanding-
only counterparts. For VQ-based VLMs, although all models exhibit relatively poor performance
(likely due to the inherent difficulty of identifying characters with the VQ encoder), the unified VLMs
still surpass the understanding-only models by the end of training. These results clearly demonstrate
the knowledge transfer from generation tasks to understanding tasks in unified VLMs, partially
explaining why increasing generation data can boost understanding accuracy.
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Figure 8: t-SNE visualization of input vision tokens corresponding to the ViT patch representing the
weather icon, output by the understanding vision adapter. Samples are colored using the weather
ground truth. From left to right: SigL.IP_u, SigLIP-SigL.IP, VQ_u, VQ-VQ. 5000 samples are
shown.

To further investigate how this knowledge transfer occurs, we analyze the understanding vision
adapter. We hypothesize that generation training may force the vision input and output spaces to
retain more image-related information. However, we conclude that this is not the primary factor
driving the observed knowledge transfer.

We analyze the understanding vision tokens output by the understanding vision adapter in SigLIP_u,
SigLIP-SigLIP, VQ_u, VQ-VQ trained on the weather-biased dataset. For each model we sample
5000 vision tokens corresponding to the ViT patch representing the weather icon in 5000 images
respectively. Using t-SNE, we visualize these tokens colored according to the weather ground truth, as
shown in Figure 8] The results reveal no confusion in weather labels across all models. Additionally,
we perform linear probing for the vision tokens from each model on a training/testing split of 4K/1K
samples. After 10 epochs, vision tokens from all the four models, including the understanding-only
models, achieve 100% linear probing accuracy. This indicates that weather-related information is
present in the vision tokens of both unified and understanding-only VLMs.

The above analysis indicates that knowledge transfer is not primarily driven by generation training
forcing the vision input space to retain more information. Weather-related information exists in both
unified and understanding-only VLMs. However, in understanding-only training, the base LLM fails
to utilize this information effectively, neglecting the relationship between input vision tokens and
text tokens. In contrast, with generation training, the base LLLM learns this relationship well. This
suggests that the base LLM is capable of implicitly aligning the vision input and output spaces to
some extent, allowing the relationships learned in the vision output space to generalize to the vision
input space.

To further validate our findings, we experiment with separate understanding and generation vision
adapters instead of sharing their parameters (default setting). As shown by SigLIP-D (D for "detach")



and VQ-VQ-D in Figures[6|and[7] we observe that parameter sharing between the two vision adapters
is not the key factor enabling knowledge transfer in unified VLMs, which also leads to the explanation
that the base LLM is capable of implicitly aligning the vision input and output spaces.

4.4 Mixed Training of Generation and Understanding Can Boost Understanding
Performance: A Real-Case Experiment

To further validate our findings in real-world scenarios, we conduct experiments based on LLaVA-
V1.5-7B |[Liu et al.|[2023]]. We extend LLaVA by adding a generation vision adapter and a genera-
tion vision head, enabling it to generate image CLIP embeddings [Tong et al.| 2024] or VQ-VAE
token IDs|Chen et al.|[2025]]. For VQ-VAE we use vq_ds16_t2i, same with the previous experi-
ments, but use a generation vision adapter of 2-layer MLP instead of a single linear layer, since the
data is more complexed. For the image generation data, we reverse the image-caption pairs from
ShareGPT4V [Chen et al.| 2023]. Specifically, we sample 350K image-caption pairs from the 1.2M
ShareGPT4V-PT dataset, using the image captions as generation instructions and the corresponding
images as generation targets.

Following the two-stage training process of the original LLaVA framework, we proceed as follows:
In the first stage, we freeze the base LLM and vision encoder while updating the understanding
vision adapter, generation vision adapter, and generation head. To this end, we augment the original
558K image understanding dataset with an additional 150K image generation samples. In the second
stage, we unfreeze the vision encoder and update all other parameters. Here, we further augment the
original 665K instruction-tuning dataset with 200K image generation samples.

Table 1: Performance comparison between original LLaVA-1.5-7B (understanding-only) and the
unified VLM version with 350K additional image generation data (150K for pre-training stage and
200K for instruction-tuning stage). Results for the original LLaVA-1.5-7B are from the official report
of LMMs-Eval[Li et al.

Model MME MMBench_EN POPE VizWiz MMVet GQA MMStar TextVQA
LLaVA 1510.7 64.3 85.9 54.4 30.6 62.0 333 45.8
CLIP-CLIP  1506.4 65.0 86.5 55.4 34.4 62.0 36.2 47.0
CLIP-VQ 1476.6 66.1 86.6 58.1 31.2 62.1 36.3 47.1

We evaluate the MLLMSs on eight popular independent MLLM benchmarks [Hudson and Manning},
2019} [Liu et al.l 2025| [Fu et al., |2023| |Chen et al., [2024b, [Yu et al.| [2023| [Li1 et al., |2023} |Gurar1
et al., 2018} [Singh et al., 2019]]. As evaluation results shown in Table 1] incorporating generation
tasks during training does not conflict with understanding tasks. The unified version achieves non-
trivial improvements on most benchmarks compared to the understanding-only version. This further
strengthens our findings and demonstrates the potential of unified VLMs with mixed training of
understanding and generation.

5 Conclusion

This work systematically investigates the generalization across understanding and generation in
various unified vision-language models (VLMs),. Our findings reveal three key insights: (1): Uni-
fied VLMs outperform understanding-only or generation-only models in both understanding and
generation tasks. Increase the generation data along can improve the performance in understanding
tasks, and vice versa. (2): The alignment between vision input and output spaces is a critical factor
for cross-task generalization. Better alignment will lead to better cross-task generalization. (3):
Knowledge learned in generation tasks can transfer to understanding tasks, even when there are gaps
between vision input and output spaces. These results validate the hypothesis that unification fosters
synergies between understanding and generation, and underscore the necessity of unified VLMs,
offering actionable guidelines for model design.
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A Additional Experiment Details

For all experiments conducted on the synthetic SmartWatch UI dataset, we utilized 3 Nvidia H100
80GB GPUs. Training was performed for one epoch with a global batch size of 393. To optimize GPU
memory usage, we employed Low-Rank Adaptation (LoRA) [Hu et al.|[2022], setting lora_r to 128
and lora_alpha to 256, with a learning rate of 2e —4 following the configuration in LLaVA-1.5. The
learning rates for the understanding vision adapter, generation vision adapter, and image generation
head were set to 1e — 4. For the default settings of 60K generation data and 120K understanding
data, the entire training process completed within an hour. Additionally, we independently generated
1.5K samples as the test dataset, with 1,000 samples for Visual Question Answering (VQA) and 500
samples for text-to-image generation.

For the final real-world case experiment, we strictly followed the implementation details of LLaVA-
1.5, using all default hyperparameters. We do not use LoRA in this experiment. We used 8 Nvidia
H100 80GB GPUs. The pre-training stage completed within 3 hours, while the fine-tuning stage
finished within 6 hours.

For all unified VLMs that generate CLIP or SigLIP embeddings, we applied cosine similarity loss on
the generation part, following [Tong et al.,2024]]. For unified VLMs that generate VQ-VAE token
IDs, we used cross-entropy loss. In the case of Sigl.IP-VQ unified VLMs, considering the scale
difference between the cross-entropy loss of VQ-VAE token IDs and language token IDs, we set the
weight of the generation loss to 0.2.

B Limitations

First, our study does not include unified VLM architectures that incorporate diffusion-based generation
components, such as Emu3 [Wang et al., 2024b]] and Transfusion [Zhou et al.}[2024]]. Second, while
the mutual benefits between understanding and generation tasks are clearly demonstrated in our
experiments using the current LLM base, adopting a more advanced LLLM base could potentially
yield even more promising results.

C Broader Impacts

Positive Impacts: Our work highlights the potential of scaling up the capabilities of vision-language
models (VLMs) for both understanding and generation through mixed training within a unified
architecture. This advancement could significantly contribute to the development of Al systems with
enhanced visual understanding and generation abilities, benefiting applications in diverse fields such
as education, design, and accessibility technologies.

Negative Impacts: The enhancement of visual generation capabilities in unified VLMs may also
lead to the creation of more realistic yet deceptive or fraudulent materials, posing risks in areas like
misinformation, deepfakes, and cybersecurity.

D Detailed Experiment Results
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Table A2: Performance comparison of various unified VLMs with understanding-only or generation-
only VLMs. “_u” refers to understanding-only; “_g” refers to generation-only; “*” refers to affine
transformation after the understanding vision adapter.

Model time_acc  weather_acc  position_acc  battery_acc total_acc  FID score
SigLIP_u 49.7 100.0 934 56.3 76.6 -
SigLIP-VQ 66.5 100.0 100.0 69.2 85.6 198.2
SigLIP-SigLIP 95.8 100.0 100.0 98.4 98.7 -
VQ_u 50.8 100.0 100.0 61.6 80.5 -
VQ_g - - - - - 210.9
VQ-SigLIP 45.8 100.0 100.0 81.2 85.5 -
VQ-VQ 52.7 100.0 100.0 96.8 89.3 190.2
SigLIP*_u 50.4 100.0 98.8 49.5 78.2 -
SigLIP*-SigL.IP 543 100.0 100.0 98.9 91.3 -
VQ*_u 52.4 100.0 97.9 56.9 78.9 -
VQ*-VQ 60.0 100.0 100.0 80.6 85.1 195.8

Table A3: Performance of different unified VLMs along the increase of understanding or generation
data.

Model Und_data Gen_data time_acc weather_acc position_acc battery_acc total_acc FID score
VQ-VQ 0K 60K - - - - - 210.9
VQ-VQ 120K 60K 52.7 100.0 100.0 96.8 89.3 192.2
VQ-VQ 180K 60K 56.0 100.0 100.0 97.5 90.2 188.1
VQ-VQ 240K 60K 73.7 100.0 100.0 97.9 94.0 165.1
VQ-VQ 300K 60K 62.8 100.0 100.0 98.4 91.8 152.0
VQ-VQ 120K 0K 50.8 100.0 100.0 61.6 80.5 -
VQ-VQ 120K 60K 52.7 100.0 100.0 96.8 89.3 192.2
VQ-VQ 120K 90K 48.3 100.0 100.0 96.2 88.3 180.8
VQ-VQ 120K 120K 48.3 100.0 100.0 80.7 84.5 171.4
VQ-VQ 120K 180K 60.0 100.0 100.0 98.1 89.3 116.4
SigLIP-VQ 0K 60K - - - - - 210.9
SigLIP-VQ 120K 60K 66.5 100.0 100.0 69.2 85.6 198.2
SigLIP-VQ 180K 60K 80.4 100.0 100.0 100.0 95.9 183.0
SigLIP-VQ 240K 60K 54.9 100.0 100.0 100.0 90.6 162.4
SigLIP-VQ 300K 60K 97.0 100.0 100.0 100.0 99.3 157.0
SigLIP-VQ 120K 0K 49.7 100.0 93.4 56.3 76.6 -
SigLIP-VQ 120K 60K 66.5 100.0 100.0 69.2 85.6 198.2
SigLIP-VQ 120K 90K 50.8 100.0 100.0 100.0 89.7 156.5
SigLIP-VQ 120K 120K 55.0 100.0 100.0 100.0 90.6 165.6
SigLIP-VQ 120K 180K 96.3 100.0 100.0 100.0 99.2 131.8

Table A4: Performance of different unified VLMs trained on weather-biased dataset.

Model time_acc weather_acc position_acc battery_acc  total_acc
SigLIP_u 529 28.6 100.0 99.7 78.7
SigLIP-SigLIP 81.7 100.0 100.0 97.2 95.9
SigLIP-SigLIP-D 99.6 100.0 100.0 99.9 99.9
SigLIP-VQ 522 100.0 100.0 98.6 90.8
VQ_u 50.9 543 81.3 71.5 70.0
VQ-VQ 49.1 97.1 100.0 94.4 88.7
VQ-VQ-D 50.7 100.0 100.0 97.4 90.3
VQ-SigLIP 52.8 100.0 100.0 80.6 86.6

Table AS: Performance of different unified VLMs trained on battery-biased dataset.

Model time_acc weather_acc position_acc  battery_acc total_acc
SigLIP_u 557 100.0 100.0 70.3 84.7
SigLIP-SigLIP 96.6 100.0 100.0 98.0 98.9
SigLIP-SigLIP-D 89.3 100.0 100.0 97.2 97.4
SigLIP-VQ 53.6 100.0 100.0 95.8 90.4
VQ_u 50.1 100.0 100.0 61.3 81.5
VQ-VQ 49.8 100.0 100.0 69.4 83.4
VQ-VQ-D 48.8 100.0 100.0 74.5 84.4
VQ-SigLIP 46.8 100.0 86.3 67.1 76.7
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