
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 1

Learning Generative RNN-ODE for Collaborative
Time-Series and Event Sequence Forecasting

Longyuan Li, Yunhao Zhang, Jihai Zhang, Junchi Yan, Member, IEEE
Yaohui Jin and Xiaokang Yang, Fellow, IEEE

Abstract—Time-series and event sequences are widely collected data types in many applications. Analysis and prediction of them
play an important role in the decision-making process. A major limitation of previous methods is that they either focus on continuous
time series or discrete events, rather than the combination of the two types of data, ignoring the correlation between them. In this
paper, we consider the problem of joint modeling and forecasting of time-series and event sequence. However, the two types of data
provide complementary information for the temporal dynamics, emphasizing the necessity of jointly modeling the both. We propose the
RNN-ODE collaborative model for joint modeling and forecasting of heterogeneous time-series and event sequence data, which
combines several. To learn complex correlations across heterogeneous sequences, we devise a tailored encoder to combine the
advances in deep point processes models and variational recurrent neural networks. To predict the probability of event occurrence at
arbitrary continuous-time horizon, we leverage the mathematical foundation of novel Neural Ordinary Differential Equations (NODE). It
is proved on multiple simulation and real data sets that compared with existing methods, integrated modeling and prediction can
effectively extract features and improve the prediction performance of time series and event sequences.

Index Terms—Probabilistic Forecasting, Event Prediction, Temporal Point Processes, Time-Series, Variational Auto-Encoder, Ordinary
Differential Equations

F

1 INTRODUCTION

Nowadays, temporal data has been widely collected and
analyzed across different areas including social networks,
electronic health, economics, financial market, transporta-
tion. According to different collection methods, there are
mainly two types of data: time-series and event sequence.
Ideally, time-series are produced by observing variables that
change continuously over time. In practice, by sampling or
aggregating at fixed intervals, the time-series data are usu-
ally represented in the form of evenly-sampled discrete-time
sequences, also called synchronous sequence [1]. Typical
time-series data include sensor data, economic index, and
traffic flow data, etc. On the other hand, event sequences
are also called asynchronous sequences, which consist of
two-tuples (event type and event occur time) that are irreg-
ularly dispersed in the continuous-time domain [2]. Typical
event sequence data refers to electrical heal records (EHR),
e-commerce transactions, social network interactions, etc.
Modeling and forecasting of the two types of temporal data
play an important role in the decision making process in
many applications, which is also the main focus of this
paper.

There have been recent works on modeling time-
series [3], [4], [5], [6], [7], [8] and event sequence [9], [10],
[11], [2], [12]. In fact, these methods deal with time-series

L. Li and Y. Jin are with State Key Lab of Advanced Optical Communication
System and Network, and MoE Key Lab of Artificial Intelligence, AI Institute,
Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.

Y. Zhang, J. Zhang, and J. Yan are with Department of Computer Science
and Engineering, and MoE Key Lab of Artificial Intelligence, AI Institute,
Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.

{jeffli,zhangyunhao,yunfan243332345,yanjunchi, jinyh}@sjtu.edu.cn
Junchi Yan and Yaohui Jin are the corresponding authors.

and event sequences independently, ignoring the depen-
dence between them. However, in real-world applications,
it is known that time-series and event sequences are strong
correlated [1]. In other words, external events affect time-
series frequently, and certain patterns in time-series may
also drive events. For example, in health care applications,
medication intake affect blood pressure, and long-term high
blood pressure may cause heart attack.

As discussed, time-series and event sequences are usu-
ally strongly correlated and provide complementary infor-
mation. Therefore, collaboratively modeling the two types
of temporal sequence becomes an urgent need. However,
as far as we know, there is currently a lack of princi-
pled integrated methodologies for such heterogeneous se-
quences, which in fact pose unique challenges: the time-
series are continuously observed in the discrete-time do-
main at fixed intervals, while the events irregularly occur
in the continuous-time domain. Such misalignment cannot
be directly well handled by most existing machine learning
methods. There are related efforts in integrating the time-
series and event sequences. One way is to extract events
from time-series data according to human-defined rules [10].
However, it is somehow ad-hoc to define the event detection
model or rules. Oppositely, the other way is to aggregate
event counts at a fixed interval to extract aligned time-series
data. However, such a coarse processing method not only
causes key information loss about the actual behavior of the
process but also leads to sparse time-series that are difficult
to learn [13].

Seeing the above issues, in this paper, we aim to address
the problem of integrated modeling and forecasting of time-
series and event sequences. To the best of our knowledge,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 2

this is the first work that considers this problem1. This is
particularly challenging for the following reasons: 1) The
joint timeline of time-series and event sequence is a mixture
of discrete and continuous timelines, which makes it incom-
patible with existing time-series and event prediction mod-
els. 2) Time-series and event sequences are complex non-
stationary, multi-modal random processes, making them
difficult to predict, especially for long-term predictions. The
model is required to describe the usefulness and limitation
of the prediction results through uncertainty modeling. 3)
The correlation between events and time-series is hetero-
geneous, i.e., there exist different types of events, multi-
ple dimensions of time-series, and different relationships
between them. 4) Within the forecast horizon, events may
occur arbitrarily at any continuous-time points, instead of a
fixed number of times.

To tackle the above challenges, first, we transform the
forecasting problem into a conditional probability density
estimation problem. Then we propose a model based on
the conditional VAE framework to optimize the edge prob-
ability density function and derive a principled objective
function to learn the highly nonlinear generative model.
Specifically, we deal with the non-aligned timeline by care-
fully devising a Time-Aware Fusion RNN component as the
embodiment of both the recognition model and prior model
to for heterogeneous sequence features learning. Moreover,
we present a novel Neural Ordinary Differential Equation
(Neural ODE) based event decoder to learn a continuous
function of time f(t) that represents the likelihood of event
occurrence at t. Such a design allows for different numbers
of events that may occur in the forecasting horizon. In
particular, different from previous event prediction models
that could only output a single prediction (e.g. the most
likely next event), we model the evolution of the event
occurrence likelihood over time, which is more informative
and coherent to the downstream decision-making tasks.

The contribution of the paper can be summarized as
follows.

• We formally define the long-term temporal forecast-
ing problem: joint prediction of event sequences over
a fixed given time window, together with the fore-
casting of time series over multiple horizons. This is

1. A preliminary part (for time series forecasting only) of this arti-
cle has been published in the conference paper [14]. In this journal
version, we have rewritten the paper (including the redrawn figures)
and made significant technical extensions including: i) We extend and
formulate the problem to a more challenging setting i.e. forecasting
event sequence given a future time window, which is often the case for
practical decision making. However, existing literature mostly focus on
next event prediction, and fixed-window event forecasting has been
rarely studied, let alone for its general case regarding with different
event types; ii) To fulfill the window-based event forecasting, we
propose a neural ODE based generative model for event sequence
forecasting which can be jointly trained with the other parts of the
whole model in an end-to-end differentiable fashion. Moreover, we
devise a clustering based technique to convert probabilistic sampling
on the intensity function into a deterministic estimation to enable
quantitative evaluation of event sequence forecasting, which is still an
open problem in literature; iii) We conduct comprehensive experiments
on multiple datasets to show the promising results of our forecasting
model, which further outperforms the conference version [14] for time
series forecasting. Moreover, detailed case studies are given to illustrate
how the period-based event sequence forecasting can be fulfilled and
evaluated.

in contrast to most existing works either focused on
time series forecasting or event prediction.

• Under the conditional VAE framework, we propose
a novel conditional density estimation model to op-
timize the edge density and derive the objective to
learn the generative temporal model. Its probabilis-
tic nature allows for flexible uncertainty modeling
over time which is of vital importance to long-term
forecasting for both events and time series.

• For event prediction performance evaluation of our
probabilistic model, we devise a clustering based
technique to convert sampling on the intensity func-
tion of temporal point process into a deterministic
output, which is still an open problem in literature.

• Experimental results including ablation studies show
the effectiveness of our devised components, includ-
ing the time-aware hybrid RNN encoder, neural ODE
decoder, and auto-regressive time-series decoder. In
particular, our method outperforms state-of-the-art
peer methods in accuracy for both time-series fore-
casting and probabilistic event prediction tasks.

The rest of the paper is organized as follows. Section 2 re-
views event prediction and time-series forecasting methods
which are found relatively separated into two independent
lines of research. In Section 3, we introduce the prelimi-
naries of the proposed model. In Section 4, we present our
integrated model of heterogeneous sequences. In Section 5,
we show results on multiple challenging datasets. Finally,
concluding remarks are given in Section 6.

2 RELATED WORKS

Depending on the way the data is generated, there are
two main types of temporal data: time-series and event
sequence, both call for effective forecasting over time. For
the time-series data, the observations are sampled from con-
tinuously changed variables, where the sampling interval
is fixed. For event sequence, observation is only recorded
when an event occurs. Due to the correlation between
events, the occurrence of an event may stimulate or suppress
the probability of the next event. For example, in social
networks, the interaction between two users may inspire
more interactions. In this case, the timing and interval of
events carry rich information about the dynamics. Because
of the different characteristics of temporal data, existing
literature works attempt to solve the prediction problem in
two orthogonal categorical of methods.

2.1 Event Prediction

Temporal Point Process (TPP) is a sophisticated framework
for modeling a sequence of events in continuous time do-
main [15], [16]. It directly estimate the rate of event occur-
rence, by using a random process whose realization involves
a list of discrete events localized in time. The dynamics of
point process can be represented by its conditional intensity
function. Traditional TPP methods such as self-exciting pro-
cesses are widely used for modeling the dynamics of earth-
quake aftershocks, news-feed streams, on-line user engage-
ment, and paper citations [17], [18], [19], [20], [11]. Recently,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 3

RNN-based point processes such as Recurrent Point pro-
cess [2], Recurrent Marked Temporal Point process [9] and
Neural Hawkes process [21] are broadly discussed. Neural
ODEs are also used to model event sequence. Moreover,
[22], [23] use a Neural ODEs as decoders of VAEs for event
prediction. [24] introduces jumping mechanism into Neural
ODEs to model conditional intensity function. However,
these existing studies ignore context dependencies of time-
series though they are known to influence event occurrence.
Moreover, these models mainly focus on the next event type
and occurrence timing instead of the long-term forecasting.
In this paper, we consider predicting the probability of
occurrence for each type of events over the forecasting hori-
zon. In this way, our approach provides richer information
about the future for better decision making.

The task of event prediction can also be cast under
the framework of time-to-event analysis or survival anal-
ysis [25], [26], [27]. Time-to-event analysis is widely used in
medical and clinical studies [28], [29], [30], [31], [32], [33],
[34], [35]. The main focus of time-to-event analysis is to
investigate the distribution of time duration of time until
the event of interest happens. There have been studies about
jointly modeling time-series with events [36], [37], [38]. A
limitation with these methods is that the predicted event
only occurs once in the future. In contrast, we consider
the problem where events are inter-correlated, and may
recurrently occur many times over time.

2.2 Time-Series Forecasting

Traditional statistical forecasting models include linear au-
toregressive models, such as ARIMA [39], Exponential
Smoothing [40] and VAR [41]. They are well-understood and
still competitive in many forecasting competitions [4]. Deep
neural networks have been proposed to learn from multiple
related time-series by fusing traditional models, such as
DeepAR [8], RNN and Gaussian copula process model [42],
Deep State Space models [7] and its interpretable version
[43], Deep Factor models [44].

Another type of network architecture for multi-horizon
forecasting involves sequence-to-sequence models [45], [46],
which are powerful tools in the domain of Natural Lan-
guage Processing (NLP), and are often used in ma-
chine translation tasks. Rather than modeling each time
point within a sequence in an autoregressive manner, the
sequence-to-sequence models use an ’encoder-deocoder’
framework, to learn a mapping between arbitrarily long se-
quences through an intermediate encoded state. Sequence-
to-sequence models are known to the forecasting commu-
nity by winning a Kaggle forecasting competition2. Its loss
function, [47] evaluation metrics [48] and generalization
bounds [5] are well-studied in the context of multi-horizon
time-series forecasting.

The methods mentioned above are for evenly-sampled
synchronous time-series. Models for other types of time-
series such as multi-rate time-series [49] and irregularly-
sampled time-series [13], [50], [22], [51] are developed,
however, they have not been able to generalize to model
heterogeneous temporal data.

2. https://www.kaggle.com/c/web-traffic-time-series-forecasting

As shown from the above works, time series forecasting
is limited to time series itself, little work has been done for
considering the event information, which is the gap to fill
by this paper.

3 PRELIMINARIES

3.1 Conditional Variational Autoencoder
Conditional Variational Autoencoder (CVAE) [52] is a con-
ditional directed graphical model which generates output
variables x conditioned on both latent variables z and
condition variables y. In the original Variational Autoen-
coder (VAE) [53], x is generated conditioned on only z:
z ∼ pθ(z),x ∼ pθ(x|z), in which way the outputs are
beyond control. To do conditional generation, x is generated
conditioned on both z and y in CVAE: z ∼ pθ(z),x ∼
pθ(x|z,y). The CVAE model is trained based on stochastic
gradient variational Bayes (SGVB) [53] framework, using
the variational lower bound of the log-likelihood as a surro-
gate objective function. The variational lower bound can be
written as:

log pθ(x|y) ≥ −KL(qφ(z|x,y)‖pθ(z|y))+Eqφ [log pθ(x|y, z)]
(1)

In this framework, qφ(z|x,y) is the proposal distribution,
also known as the recognition model, to approximate the
true posterior. x is generated through the distribution
pθ(x|y, z), also known as the generation model. Both the
recognition and generation models are implemented us-
ing neural networks. Assuming Gaussian latent variables
and approximating the second term by drawing samples
z(l) ∼ qφ(z|x,y) (l = 1, · · · , L), the variational lower
bound can be further written as:

L̃CVAE(x,y; θ, φ)

=− KL(qφ(z|x,y)‖pθ(z|y)) +
1

L

L∑
l=1

log pθ(x|y, z(l))
(2)

Notice that z is sampled using reparameterization trick:
z(l) = gφ(x,y, ε(l)), ε(l) ∼ N (0, I), which allows error
backpropagation in the training process. Through the meth-
ods above, CVAE can be trained efficiently using stochastic
gradient descent (SGD).

CVAE framework has been successfully applied to pro-
cess sequence data in natural language processing [54], [55].

3.2 Neural Ordinary Differential Equations
Neural Ordinary Differential Equations (Neural ODEs) [22]
are a family of continuous-depth neural networks. Different
from conventional discrete-depth networks (such as con-
volutional neural networks (CNNs) and recurrent neural
networks (RNNs)) which model the transformation between
two adjacent layers:

ht+1 − ht = fθ(ht) (3)

where t ∈ Z≥0 denotes the discrete depth and ht is the
hidden state of layer t.

Neural ODEs uses ordinary differential equation to
model the continuous evolution dynamics of hidden states:

dh(t)

dt
= fθ(h(t), t) (4)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 4

Notations Descriptions
T, τ length of observing and predicting time

window
xt value of time-series measured at time t
cj , tj type and occurrence time of the j-th event
C number of event types
n,m number of events in observing and predict-

ing window
X1:T ,XT+1:T+τ past and future time-series segmented by

time T
H0+:T ,HT+:T+τ past and future event sequence

P,F past and future data, including both time
series and events

Z latent variable of CVAE
θ, φ variables of generative and recognition

model in CVAE
ϕ, ζ, ψ feature extractors (i.e. functions) modeled

by multilayer perceptrons i.e. MLP
hXi ,h

H
tj hidden state of past time-series and event

sequence encoder at time i and tj
hFXi ,hFHtj hidden state of future time-series and event

sequence decoder at time i and tj

TABLE 1: Notations and descriptions

Here t ∈ R≥0 denotes the continuous depth. fθ represents
the evolution dynamics of hidden states over t, which can
be parameterized by a conventional neural network. Neural
ODEs can be trained by end-to-end backpropagation algo-
rithm. Once fθ is well-trained, given the initial value h(0),
hidden state of any depth h(t) can be easily computed by a
black-box differential equation solver:

h(t0), . . . ,h(tN) = ODESolve(fθ ,h(0), t0, . . . , tN) (5)

Thanks to its continuous-time (depth) property, Neural
ODEs can be used to model irregularly-sampled time-series
and temporal point processes [22], [23], [51], [24].

4 METHOD

This section introduces the proposed method. Section 4.1 in-
troduces our problem formulation. Section 4.2 describes the
overall framework of our model. Section 4.3 shows how we
model the probability of sequential data, which is of great
importance for any CVAE model. Section 4.4 introduces how
we implement our model, including structure, training and
forecasting processes of our neural networks. The important
notations used in this paper are shown in Table 1.

4.1 Problem Formulation

We assume that past time-series and event sequence may
interact with each other. Observing the time-series and event
sequence during a time interval (0, T], our goal is to predict
the future time-series and events during (T, T + τ], where
T, τ ∈ Z>0. The problem is illustrated in Figure 1.

More formally, we use X1:T = {x1,x2, . . . ,xT } to de-
note an M -dimensional past time-series measured at T
consecutive steps {1, 2, . . . T}, where each xt ∈ RM . A
potentially correlated event sequence is denoted asH0+:T =
{(c1, t1), (c2, t2), . . . , (cn, tn)}, where ci ∈ {1, 2, . . . , C} is
the event type of the i-th event and {ti ∈ R>0|0 < ti ≤

Past time series(multivariate synchronous）

Past event sequence(multi-types asynchronous)

Observing window Predicting window

Interaction

Prediction
interval

Intensity curve

Time series
Event type I
Event type II

Fig. 1: Illustration of collaborative time-series and event
sequence forecasting. Past time-series and event sequence
are in orange, predicted time-series and event sequence are
in blue. Since past time-series and event sequence interact
with each other, a integrated model is needed to disentan-
gle such exogenous factors. Note that our model performs
probabilistic prediction instead of deterministic prediction,
therefore we get confidence intervals of time-series and
conditional intensity function of event sequence.

T, ti−1 < ti} is the time of occurrence. Note that a time-
series is measured at evenly-sampled discrete time points,
but events in an event sequence happen irregularly in
continuous-time domain.

Given the past time-series X1:T and event sequence
H0+:T in observing window (0, T], we want to estimate the
probability distribution of future data in predicting window
(T, T + τ] (see Fig. 1):

p(XT+1:T+τ ,HT+:T+τ |X1:T ,H0+:T ,Φ) (6)

Here XT+1:T+τ = {xT+1,xT+2, . . . ,xT+τ} denotes the
future time-series in the predicting window (T, T + τ].
HT+:T+τ = {(cn+1, tn+1), (cn+2, tn+2), . . . , (cn+m, tn+m)}
denotes the future event sequence in this window. Φ denotes
the model parameters. n,m ∈ Z≥0 are the number of
events in observing and predicting window, and vary in
different sequences. n = 0 or m = 0 means that there is no
event in the corresponding window. Note that the observing
window (0, T] is actually {1, 2, . . . , T} for time-series, same
for predicting window.

4.2 Generative Forecasting Framework

We use P = {X1:T ,H0+:T } to denote past time-series
and event sequence, F = {XT+1:T+τ ,HT+:T+τ} to denote
future data. In general, we want to estimate the probability
distribution of future conditioned on the past, denoted
as pθ(F|P), where θ is parameters for generative model.
To do so, we introduce a latent variable Z and use the
CVAE framework [52]. Overall, the latent variable Z is
generated from prior distribution pθ(Z|P) and future data
F is generated from the generative model pθ(F|P,Z):
Z ∼ pθ(Z|P),F ∼ pθ(F|P,Z). Marginalizing out Z , we
can obtain the target distribution:

pθ(F|P) =

∫
Z
pθ(F ,Z|P) dZ

=

∫
Z
pθ(F|P,Z)pθ(Z|P) dZ

(7)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 5

Due to the intractable posterior distribution, it is hard
to optimize the log-likelihood directly. Instead, the CVAE is
trained by optimizing the variational lower bound of log-
likelihood, i.e.:

log pθ(F|P)

= log

∫
Z
qφ(Z|P,F)

pθ(F ,Z|P)

qφ(Z|P,F)
dZ

≥
∫
Z
qφ(Z|P,F) log

pθ(F ,Z|P)

qφ(Z|P,F)
dZ

=

∫
Z
qφ(Z|P,F) log

pθ(Z|P)pθ(F|Z,P)

qφ(Z|P,F)
dZ

=− KL(qφ(Z|P,F)‖pθ(Z|P)) + Eqφ [log pθ(F|P,Z)]

=L(P,F ; θ, φ)

(8)

where KL is Kullback-Leibler (KL) divergence. qφ(Z|P,F)
is the “recognition” model introduced to approximate the
intractable true posterior distribution pθ(Z|P,F). It is also
known as “encoder” and we use qφ for simplification.
pθ(F|P,Z) is the “generative” model used to generate
future distribution from latent variable and past data. “gen-
erative” model is also known as “decoder”. pθ(Z|P) is
the prior distribution, which is often modeled by a neural
network in CVAE.

Assuming qφ(Z|P,F) and pθ(Z|P) to be Gaussian dis-
tributions, the KL term in Eq. 8 is differentiable as it has
an analytical solution, while the expectation term is not.
Hence we draw K ∈ Z>0 samples from the “recognition”
model to approximate the expectation term and use the
reparameterization trick [56] to make the sample operation
differentiable. The empirical bound can be written as:

L̃CVAE(P,F ; θ, φ)

=− KL (qφ(Z|P,F)‖pθ(Z|P)) +
1

K

K∑
k=1

log pθ(F|P,Z(k))

(9)

where Z(k) = gφ(P,F , ε(k)), ε(k) ∼ N (0, I). gφ is a de-
terministic differentiable function to perform sample opera-
tion. Therefore, we can compute the empirical lower bound
and backpropagate it to perform training.

Remarks. Our approach

4.3 Conditional Probability Modeling
It shall be noted that qφ(Z|P,F) and pθ(Z|P) in Eq. 8 can
be easily modeled with a simple assumption of Z , such as
multivariate Gaussian, while pθ(F|P,Z) can not. The main
challenge is the sequential structure of F .

We assume that time-series and event sequence are con-
ditionally independent given P,Z , i.e.:

pθ(F|P,Z) = pθ(XT+1:T+τ ,HT+:T+τ |P,Z)

= pXθ (XT+1:T+τ |P,Z)︸ ︷︷ ︸
probability of time-series

pHθ (HT+:T+τ |P,Z)︸ ︷︷ ︸
probability of event sequence

(10)

Here pXθ denotes the probability distribution of future
time-series and pHθ denotes the probability distribution of
future event sequence. θ denotes the generative model, we
omit it in this section for better readability. Next, we will

show how to model time series pX (XT+1:T+τ |P,Z) and
event sequence pH(HT+:T+τ |P,Z) respectively.

4.3.1 Probability of time-series.
Assuming each step depends on P,Z and earlier predicted
steps, the probability distribution of time-series can be com-
puted by:

pX (XT+1:T+τ |P,Z)

=pX (xT+1|P,Z)pX (xT+2|P,Z, X̃T+1:T+1) . . .

pX (xT+τ |P,Z, X̃T+1:T+τ−1)

=
τ∏
i=1

pX (xT+i|P,Z, X̃T+1:T+i−1)

(11)

where X̃ denotes predicted values. We let X̃T+1:T+i−1 =
xT−1 when i = 1 for practical computing.

4.3.2 Probability of event sequence.
Different from time-series measured at discrete grid time
points, events happen irregularly in continuous-time do-
main and the number of events in the future varies from
sequence to sequence. Therefore, it is hard to model the
probability distribution of an event sequence directly. We
resort to conditional intensity function to model the proba-
bility of event sequence.

A multivariate event sequence with C types of events
can be viewed as the combination ofC univariate sequences.
Each univariate sequence is formulated by events with the
same type label. Formally:

HT+:T+τ

={(cn+1, tn+1), (cn+2, tn+2), . . . (cn+m, tn+m)}
= ∪Cc=1 {(c, tc1), (c, tc2), . . . (c, tcmc)}
= ∪Cc=1 HcT+:T+τ

(12)

Here, tcj denotes occurrence time of the j-th event of type
c. mc is the number of events of type c with

∑C
c=1mc = m.

HcT+:T+τ denotes the event sequence of type c in the future.
With the conditional independence assumption, the

probability of a multi-type event sequence can be modeled
by:

pH(HT+:T+τ |P,Z) =
C∏
c=1

pH(HcT+:T+τ |P,Z) (13)

Given the intensity function λc(t|P,Z), the probability
of a univariate event sequence HcT+:T+τ can be modeled as:

pH(HcT+:T+τ |P,Z)

=pH(tc1, t
c
2, . . . , t

c
mc |P,Z)

=
mc∏
j=1

λc(tcj |P,Z)e−
∫ T+τ
T λc(t|P,Z)dt

(14)

As the event type in each HcT+:T+τ is the same, we can
get rid of event type and only need to model the intensity
function for each type of event.

4.4 Implementations
The architecture of our model is shown in Fig. 2. We use the
CVAE framework: past time-series and event sequence are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 6

input into the prior network for feature extraction and latent
distribution computation. Then the feature and sampled
latent variable is input into decoders for future prediction.
We know describe components in our model in detail.

4.4.1 Prior network and recognition model
We use prior network to compute the prior distribution
pθ(Z|P) and recognition Model (also known as encoder)
to compute qφ(Z|P,F) to approximate true posterior dis-
tribution.

Time-Aware Hybrid RNN. As we have discussed above,
time-series is measured at discrete grid time points and
events happen irregularly in continuous-time domain. This
difference makes it challenging to model these two kinds
of data jointly, especially for time order information preser-
vation, e.g., an event can only be influenced by time-series
earlier than it. We use Time-Aware Hybrid RNN to extract
feature from past time-series and event sequence jointly.

Time-Aware Hybrid RNN is consist of two RNNs: a
Time-series RNN and an Event RNN. The time-series tran-
sits at grid time points 1, 2, . . . , T where values are mea-
sured. The Event RNN, following [9], takes event type and
time duration as input and transits when events occur.
To jointly model them and preserve time order, we also
take temporal features which are uncorrelated to time-series
and events as input for both RNNs. Assuming we have
a time-series with length T and a event sequence with
length n, Time-Aware Hybrid RNN performs the following
operations:

hXi = f([ϕ(xi), ψ(ti)],h
X
i−1) for i = 1, . . . , T

hHtj = g([ζ(cj),∆tj , ψ(tj)],h
H
tj−1

) for j = 1, . . . , n
(15)

where f and g denote time-series RNN and Event RNN,
∆tj = tj − tj−1 denotes the time duration between two
adjacent events. ϕ and ζ extract features from time-series
and event type respectively. The blod ti denotes temporal
features (such as absolute timestamp, hour of day and day
of week) and we use ψ to embed them into a feature vector.
[·, ·] denotes concatenation operation. In our experiments,
we use MLPs for ϕ, ζ and ψ. f and g are parameterized by
GRUs and initialized with zero vectors for i = 0 and j = 0.

Auxiliary Transition Unit. When modeling very long se-
quences, a typical practice is to split time-series into chunks
that are overlapped at the time axis [8]. However, with the
introduction of event sequences, such an approach causes
a problem. Because events occur irregularly, many adjacent
chunks may share the same set of events, where the event
type, timing, and all other features are the same. However,
the forecast targets can be different for the adjacent chunks,
which means that the same event sequence input may reflect
different targets, making it difficult for the model to capture
features within the event sequence. To solve the problem,
we introduce Auxiliary Transition Unit, whose basic idea is
to let the asynchronous RNN know the exact end time as
the time-series RNN, which is done by an auxiliary transit
at T with zero event type input:

hHT = g
(

[ζ(0),4tT , ψ(tT)],hHtn

)
(16)

where4tT = T − tn. By doing so, our model can be trained
in batch effortlessly, without worrying about data conflicts.

Synergetic Layer. We use hXT and hHT to represent fea-
tures extracted from past time-series and event sequence by
Time-Aware Hybrid RNN. Synergetic Layer transfers these
features into prior distribution pθ(Z|P) and approximate
posterior distribution qφ(Z|P,F). Following [56], we as-
sume these two distributions are multivariate Gaussians
with diagonal covariance. For the prior distribution, we
have:

pθ(Z|P) = N (µθ,Σθ)

µθ = MLPµθ ([hXT ,h
H
T])

Σθ = diag2(MLPΣ
θ ([hXT ,h

H
T]))

(17)

As for the recognition model, we input past and future
data X1:T+τ and H0+:T+τ into the same Time-Aware Hy-
brid RNN to get extracted features hXT+τ and hHT+τ . Then
another pair of MLPs are utilized to compute the parameters
of qφ(Z|P,F):

qφ(Z|P,F) = N (µΦ,ΣΦ)

µΦ = MLPµΦ([hXT+τ ,h
H
T+τ])

ΣΦ = diag2(MLPΣ
Φ([hXT+τ ,h

H
T+τ]))

(18)

4.4.2 Generative model

Given the extracted past features hXT ,h
H
T and sampled

Z ∼ qφ(Z|P,F), the generative model parameterizes
the future distribution pθ(F|P,Z). More specifically, the
time-series decoder models future time-series distribution
pXθ (XT+1:T+τ |P,Z) and the event decoder models future
event sequence distribution pHθ (HT+:T+τ |P,Z).

Auto-regressive Time-series Decoder. We use an RNN
to model the hidden state at each future step and then map
the hidden state to some probability distribution. Formally,
the hidden state is initialized as:

hFXT = MLPXθ ([hXT ,h
H
T ,MLPZθ (Z)]) (19)

where hFXT denotes the hidden state of future time-series
and should be distinguished from hXT . Then we iteratively
compute the probability distribution at each time step i =
T + 1, . . . , T + τ as:

hFXi = dθ([ϕ(xi−1), ψ(ti)],h
FX
i−1)

xi ∼ PD(Rθ(h
FX
i))

(20)

where dθ is an RNN, ϕ and ψ are same feature extractors
we use in Eq. 15. Here we do not set the specific form of
the distribution. Instead, we assume it follows an abstract
distribution PD with parameters R. PD can take different
forms for different kinds of data, making our model more
flexible. Note that when i = T +1, xi−1 is not sampled from
distribution but the true value from past series.

Event Decoder. Because the number of events in the
predicting window (T, T + τ] is unfixed, it is hard to model
the probability of future event sequence directly. Instead, we
model the conditional intensity function and use Eq. 13 and
Eq. 14 to compute pHθ (HT+:T+τ |P,Z).

Here we use neural ODEs to model the intensity func-
tion, which enables to model the complex dynamics of inten-
sity function without assuming its functional form like [9].
Formally, we use the same technique as Eq. 19 to initialize

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 7

Shared temporal

feature embedding

MLP

1 2 T+1 T+23 T T+𝜏
𝑡1 𝑡2 𝑡3

Heterogeneous past sequence

Asynchronous

Event RNN

Event type I

Event type II

Time-series

RNN

Auxiliary

Transition

Unit

MLP MLP

MLP

MLP

𝜇 Σ

𝒁

Learned prior
𝝀𝟏(𝒕𝟑)

Time-series

decoder

Event

decoder

samples

Neural ODE

Fig. 2: Overview of our synergetic model for homogeneous sequence. Take an example of observing window’s length
T = 4, and n = 2 events occur within the time range. The length of predicting window τ = 3, and m = 1
event occurs within the time range. In training process, past data P is input into Time-series RNN and Asynchronous
Event RNN to compute the prior distribution pθ(Z|P); past and future data (P,F) is input into same RNNs to
get qφ(Z|P,F) to approximate the posterior distribution (not shown in the plot). Time-series Decoder outputs the
distribution of xt at each step to compute pXθ (XT+1:T+τ |P,Z). Event Decoder outputs λ at points when events occur
in real to compute pHθ (HT+:T+τ |P,Z). The model is learned to maximize the conditional probability p(F|P) by
minimizing KL(qφ(Z|P,F)‖pθ(Z|P)) − Eqφ

[
log(pXθ (XT+1:T+τ |P,Z)pHθ (HT+:T+τ |P,Z))

]
. In predicting process, Event

Decoder outputs λ at evenly distributed grid points to get intensity curves for further prediction.

the hidden state of Event Decoder:

hFHT+ = MLPHθ ([hXT ,h
H
T ,MLPZθ (Z)]) (21)

where MLPHθ denotes the MLP for event sequence, different
from the one in Eq. 19. Then the hidden state at time points
tn+1, tn+2, . . . , tn+m can be computed by:

hFHtn+1
,hFHtn+2

, . . . ,hFHtn+m

=ODESolve(hFHT+ , Iθ, tn+1, tn+2, . . . , tn+m)
(22)

where tn+1, tn+2, . . . , tn+m are time points when real event
occur and should be known in training process. Iθ is a
function to model the changing dynamics of hidden state:
Iθ(h

FH
t , t) =

hFHt
dt . Then an MLP is used to compute the

conditional intensity for each type of event at these time
points:

λ(tn+j |P,Z) = MLPλθ (hFHtn+j
) (23)

where λ(tn+j |P,Z) ∈ RC , the c-th dimension represents
the intensity of type c at that time point. MLPλθ is a network
with C output units and SoftPlus function as activation.
Moreover,

∫ T+τ
T λc(t|P,Z)dt in Eq. 14 can also be com-

puted using neural ODEs by assigning initial state as 0 and
Iθ = λc(t|P,Z).

4.4.3 Training
Our model is trained by gradient descent to maximize the
evidence lower bound (ELBO), as computed in Algorithm 1.

Algorithm 1 computes the ELBO of a single sequence
{P,F}. In practice, we use mini batch gradient descent to
train the model. Using tricks such as padding and dummy

Algorithm 1: ELBO computation for RNN-ODE
Input: Past time-series and event sequence

P = {X1:T ,H0+:T }; Future time-series and
event sequence F = {XT+1:T+τ ,HT+:T+τ};
Number of samples to approximate
expectation K ;

Output: ELBO of the input data ELBO(P,F ; θ, φ)
Compute pθ(Z|P) using Equations 15, 16 and 17;
Compute qφ(Z|P,F) using Equations 15, 16 and 18;
for k = 1 to K do

Sample Z(k) ∼ qφ(Z|P,F) using
reparameterization trick;

Compute pXθ (XT+1:T+τ |P,Z(k)) using
Equations 19, 20 and 11;

Compute pHθ (HT+:T+τ |P,Z(k)) using
Equations 21, 22, 23, 14 and 13;

end
ELBO(P,F ; θ, φ) =

−KL(qφ(Z|P,F)‖pθ(Z|P))

+ 1
K

∑K
k=1 log pXθ (XT+1:T+τ |P,Z(k))

+ 1
K

∑K
k=1 log pHθ (HT+:T+τ |P,Z(k))

Return ELBO(P,F ; θ, φ);

code, we compute the mean ELBO of a batch of sequences
and optimize it by gradient descent.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 8

Algorithm 2: Probabilistic Forecasting by Monte-
Carlo Sampling

Input: Heterogeneous past data P = {X1:T ,H0+:T };
Trained model pθ(F|P,Z) and pθ(Z|P);
Forecast horizon τ ; number of samples N and
number of time points in intensity curve M ;

Output: Mean and confidence intervals for future
time series; Conditional intensity curves for
future event sequence;

Compute hXT and hHT by Eq. 15;
Compute pθ(Z|P) by Eq. 17;
for n = 1 to N do

Sample Z ∼ pθ(Z|P);
hFXT = MLPXθ ([hXT ,h

H
T ,MLPZθ (Z)]);

for i = T + 1 to T + τ do
hFXi = dθ([ϕ(xi−1), ψ(ti)],h

FX
i−1)

x
(n)
i ∼ PD(Rθ(h

FX
i))

end
hFHT+ = MLPHθ ([hXT ,h

H
T ,MLPZθ (Z)])

hFH
T+ 1

M τ
,hFH

T+ 2
M τ

, . . . ,hFHT+τ

= ODESolve(hFHT+ , Iθ, T+ 1
M τ, T+ 2

M τ, . . . , T+τ)
for i = 1 to M do

λ(n)(T + i
M τ |P,Z) = MLPλθ (hFH

T+ i
M τ

)

end
end
Return mean and quantiles of x

(n)
i and

λ(n)(T + i
M τ |P,Z) along axis n;

4.4.4 Forecasting
Probabilistic forecasting of time-series and event se-
quence. Once our model is well-trained, given past data, we
can forecast the future time-series and event sequence for
new coming data. Due to the randomness and unobserved
external effect, the future can be uncertain, i.e., the same
past data leads to different future. This is very common in
time-series and event sequence forecasting. Therefore, we
perform probabilistic forecasting to provide prediction with
uncertainty for decision making. The forecasting approach
is shown in Algorithm 2.

Deterministic forecasting of event sequence. Although
intensity curves can completely characterize the future
event sequence, they are abstract for human but hard to be
compared with other deterministic methods. Thus, we need
to gain deterministic events from intensity curves. This is
done by Algorithm 3.

We predict future events for each type respectively by
Algorithm 3, attach their type labels with them, pool them
together and sort according to the occurrence time.

5 EXPERIMENTS

We conduct experiments to test the performance of our
model. Section 5.1 introduces our experiment settings, in-
cluding data descriptions and implementation details. Sec-
tion 5.2 presents results and analysis of time-series forecast-
ing compared with baseline methods. Section 5.3 presents
results and analysis of event sequence forecasting. We visu-
alize some of our forecasting results in Section 5.4.

Algorithm 3: Deterministic Event Prediction from
Intensity Curve by Sampling Clustering

Input: Univariate intensity curve of event type c
λcT+:T+τ (t|P,Z) ∈ RM×1; Number of
samples N ; Minimum weight for a cluster ε;

Output: Occurrence time points of events
corresponding to the intensity curve

Set the pool of time points as empty S = {};
for i = 1 to N do

Use thinning algorithm to sample event sequence
from intensity
seqi = {t1, t2, . . . , tni} ∼ λcT+:T+τ (t|P,Z);

Append sampled time points to the pool
S = S ∪ seqi;

end
Use GMM to cluster time points in S and BIC for
cluster number selection, denote the selected model
as G with k clusters;
events = {}
for i = 1 to k do

if Gweights[i] ≥ ε then
events = events ∪Gcenters[i]

end
Return selected cluster centers events;

5.1 Protocols

5.1.1 Dataset description

Two univariate datasets and one multivariate dataset are
used for evaluation, whereby four temporal features are
extracted: absolute time, hour-of-day, day-of-week, and
month-of-year for hourly-sampled time-series data. The last
four weeks are hold-out for test, and the rest for training.
We train the model to predict the future day (24 data points)
given the past week (24 × 7 = 168 points), along with events
within that week.

Electricity3. The UCI household electricity dataset con-
tains time-series of electricity usage in kW recorded hourly
for 370 clients. A univariate series of length 21,044 is used
here, and the time points with fluctuations larger than 30
are extracted as events. The event types are divided into up
and down according to the direction.

Traffic4. The dataset corresponds to hourly-sampled
road occupancy rates in percentiles (0-100%) collected from
the California Department of Transportation. The first uni-
variate series of length 17,544 is used for experiment. We
extract time points with fluctuations higher than 10% as
events, whose types are up and down according to the
direction.

Environment. It is a public air quality multivariate
dataset [43], which may showcase how atmospheric vari-
ables interact with weather events. Four hourly-sampled
variables: PM2.5, dew point, temperature and pressure are
used, and three types of events are extracted from the
minute-level data sources: wind start, wind stop and rain
start.

3. https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams
20112014

4. https://archive.ics.uci.edu/ml/datasets/PEMS-SF

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 9

5.1.2 Implementation details

5.1.3 Parameter settings

5.2 Forecasting of time-series

5.2.1 Evaluation metrics

The quality of the forecasting is generally measured using a
metric calculated between the predicted and actual values
in the forecast horizon. Probabilistic forecasts estimate a
probability distribution rather than predicting a single value
as point forecasts do. Traditional accuracy metrics such as
MAE, RMSE are considered incomplete because they are
unable to evaluate uncertainties. The Continuous Ranked
Probability Score (CRPS) generalizes the MAE to evaluate
probabilistic forecasts [57]. Given the true observation value
x and the cumulative distribution function (CDF) of its
forecasts distribution FX , the CRPS score is given by:

CRPS(FX , x) =

∫ ∞
−∞

(FX(y)− 1(y − x))
2

dy (24)

where 1 is the Heaviside step function. CRPS attains its
minimum when the predictive distribution F and the data
distribution are identical, such that CRPS is a proper scoring
rule [58]. Given n samples Xi ∼ FX as natural samples of
the predictive cumulative distribution function (CDF), we
employ the empirical CDF of FX , i.e., F̂X = 1

n

∑n
i=1 1{Xi ≤

y}.
We also use root-mean-square error (RMSE), which is

a standard non-probabilistic evaluation metric. Note the
errors are first squared and then averaged, thus the RMSE
gives high weight to large errors.

5.2.2 Baselines

5.2.3 Results and analysis

5.3 Forecasting of Events

5.3.1 Data filtering

We use time-series and event sequences extracted from
the three datasets as introduced in Section 5.1.1. We first
sub-sample these sequences to include at least two events
during observing and predicting window (0, T + τ]. This is
not necessary for our proposed model as it can deal with
situations where no event happens. Most baseline models
can only handle event sequences having at least two events.
The filtering operation is applied to make different meth-
ods comparable. After filtering, there are 1,202 sequences
remaining in Electricity dataset, 1087 sequences in Traffic
and 3356 sequences in Environment. Each sequence consists
168 hours’ past data (time-series and events) and 24 hours’
future data for prediction. These sub-sampled datasets are
used for probabilistic prediction.

To evaluate deterministic event prediction capability, we
need to ensure that there exist events in the predicting
window. We then sub-sampled each of the above datasets to
include at least 1, 2 and 3 events in their predicting window.
Size of datasets after filtering is shown in Table 2. These
sub-sampled datasets are used for deterministic multi-step
prediction.

Dataset
events

1 2 3

Electricity 703 559 371
Traffic 512 469 206
Environment 1627 601 138

TABLE 2: Size (number of sequences) of datasets after fil-
tering to include at least 1, 2 and 3 events in the predicting
window.

5.3.2 Baselines
The evaluation involves four peer methods, including two
traditional temporal point processes methods and two re-
current neural network(RNN)-based event prediction meth-
ods:

Hawkes Process [18]: A Hawkes process captures mu-
tual excitation phenomenon among events. We fit a self-
excitation Hawkes process with the conditional intensity
function being defined as:

λu(t) = µu +
∑
i:ti<t

αuuiγ(t, ti), (25)

where γ(t, ti) ≥ 0 is the triggering kernel to capture tempo-
ral dependencies, µu is a background intensity independent
of the history for the u-th Hawkes process. We use exponen-
tial kernels:

γ(t, ti) = βuui exp (−βuui(t− ti)) (26)

here we fix βuui = 0.1, making it a convex problem so that
can be easily optimized [59].

Hawkes Process (regularized) [60]:A multially-exciting
multi-dimensional Hawkes process with sparse and low-
rank regularization. The objective function of Hawkess-
regularized is defined as:

x min
A≥0,u≥0

−L(A,µ) + λ1 ‖A‖∗ + λ2 ‖A‖1 , (27)

where A = (αuu′) for mutually-exciting coefficients and
µ = (µu) for background intensities. The L(A,µ) is log-
likelihood of Hawkess process model, λ1 ‖A‖∗ is the nu-
clear norm of matrix A used to estimate low-rank metrics,
and λ2 ‖A‖1 is the `1 norm of matrix A used to enforce
sparsity. The parameter λ1 and λ2 control the strength of
the two regularization terms. We use the same kernel as
Hawkess process and set λ1 = λ2 = 5× 10−4, which is the
default value in the standard library.

Hawkes and Hawkes (regularized) processes are imple-
mented by python standard library tick5.

Recurrent Marked Temproal Point Process
(RMTPP) [9]: RMTPP learns the intensity of the marked
temporal point process via an RNN; the intensity function
is assumed to follow a partially parametric form that can
capture non-linear temporal dependencies of future event
timing and types on history events. We set the layer and
dimension of this RNN the same as Event RNN used in our
model: one layer LSTM with 100 neurons.

Attentional Event Recurrent Point Processes
(AERPP) [61]: AERPP introduces attention mechanism
to RMTPP. Different from RMTPP where hidden states

5. https://x-datainitiative.github.io/tick/index.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 10

are computed directly by an RNN, AERPP uses attention
weights to model the influence strength of past events.
We set the structure of AERPP the same as RMTPP
and attention function is implemented by Tanh function
following [61].

RMTPP and AERPP are from open source as also re-
leased by the authors’ group6.

To test how our model leverages correlations between
heterogeneous sequences, we introduce three variants of
ablated RNN-ODE below.

RNN-ODE (TS ablated): It ablates time-series informa-
tion of RNN-ODE, making RNN-ODE a generative model
which takes past event sequence as input and predicts
future events: p(HT+:T+τ |H0+:T ,Φ).

RNN-ODE (TS-input ablated): It ablates time-
series input of RNN-ODE, making RNN-ODE a gen-
erative model which only takes past event sequence
as input but predicts future time-series and events:
p(XT+1:T+τ ,HT+:T+τ |H0+:T ,Φ).

RNN-ODE (TS-output ablated): It ablates time-
series output of RNN-ODE, making RNN-ODE a gen-
erative model which takes past time-series and event
sequence as input but only predicts future events:
p(HT+:T+τ |X1:T ,H0+:T ,Φ).

5.3.3 Evaluation metrics
We compare the probabilistic and deterministic predict-
ing ability of our model with baselines. For probabilistic
predicting, we use Log Likelihood (LL). For deterministic
predicting, we use Mean Absolute Error (MAE) for event
time prediction and classification Accuracy (ACC) for event
type prediction.

Log Likelihood (LL) is a common evaluation metric for
temporal point process. It estimates how well the condi-
tional intensity function models a event sequence. More-
over, it does not consider whether there exists event in the
predicting window or how many events there are.

Given HT+:T+τ = {(cn+1, tn+1), . . . , (cn+m, tn+m)}, for
Hawkes process, Hawkes-regularized and RNN-ODE which
compute an individual intensity function for each type, LL
is computed as:

LL(HT+:T+τ) =
C∑
c=1

(
mc∑
j=1

log λc(tcj)−
∫ T+τ

T
λc(t)dt) (28)

For RMTPP which computes overall intensity function
and type probability independently, LL is computed as:

LL(HT+:T+τ)

=
m∑
j=1

log λ(tn+j)−
∫ T+τ

T
λ(t)dt+

m∑
j=1

logP (cn+j)
(29)

In fact, if we define λc(t) = λ(t)P (cn+j+1 = c),∀t ∈
(tn+j , tn+j+1], Eq. 29 is consistent with Eq. 28. Yet it is
hard to compute Log Likelihood for AERPP, as AERPP is
specially designed for deterministic prediction.

For deterministic prediction, we let all methods predict
next s(s = 1, 2, 3) event(s) in the predicting window. For
our model, this is done by deterministic event prediction

6. https://github.com/Thinklab-SJTU/DP3

Electricity Traffic Environment
Hawkes -4.94 -3.42 -2.01
Hawkes (regularized) -4.91 -3.34 -2.02
RMTPP -5.57 -6.49 -4.12
AERPP / / /
RNN-ODE (TS ablated) -4.85 -2.31 -1.82
RNN-ODE (TS-input ablated) -4.72 -2.28 -1.83
RNN-ODE (TS-output ablated) -4.47 -1.19 -2.29
RNN-ODE (ours) -4.29 -1.18 -2.32

TABLE 3: Evaluation of probabilistic prediction in terms of
Log Likelihood (LL) on three datasets.

algorithm we proposed in Section 4.4.4. For baseline meth-
ods, we predict next s events iteratively: predict next event,
then use the predicted event as input to predict the next.
The timing and the type for these s event(s) are evaluated
by MAE and ACC.

Mean Absolute Error (MAE) of next s event(s) is com-
puted as:

MAE(H̃T+:T+τ ,HT+:T+τ) =

∑s
j=1 |t̃n+j − tn+j |

s
(30)

Accuracy (ACC) of event type is computed as:

ACC(H̃T+:T+τ ,HT+:T+τ) =

∑s
j=1 1[c̃n+j = cn+j]

s
(31)

In the above Eq. 30 and Eq. 31, H̃T+:T+τ =
{(c̃n+1, t̃n+1), . . . , (c̃n+s, t̃n+s)} denotes the predicted
events and HT+:T+τ denotes the ground truth. Note that
there may be more than s events in HT+:T+τ but we only
care about the first s in the predicting window. Timing
is transformed back to the original scale, so MAE falls in
[0, 24].

Given a set of sequences, we use mean LL, MAE and
ACC for evaluation.

5.3.4 Results and analysis

The results of probabilistic and deterministic prediction are
shown in Tables 3 and Table 4, respectively. Based on these
results, we tend to make the following observations.

Overall performance. The proposed ODE-RNN models
beat all baseline models on probabilistic prediction task. For
deterministic prediction, our models outperform baseline
models significantly on event timing prediction. RMTPP
and AERPP perform better than our model on event type
prediction, especially for single-step prediction. Compared
with baseline methods, the performance of our RNN-ODE
models drops more slowly with the increasing prediction
steps. In our analysis, such a reduced error accumulation in
multi-step prediction is due to the adoption of Neural ODEs
instead of iteratively prediction.

Performance of traditional methods. Traditional tem-
poral point process models such as Hawkes and Hawkes
(regularized) are still strong benchmarks. As we can see
in Table 3, these traditional methods beat neural network-
based model RMTPP on probabilistic prediction. Hawkes
(regularized) even outperforms RMTPP and AERPP on
deterministic timing prediction on Environment dataset.
However, due to their strong assumptions about the form
of intensity function, it is hard for them to model complex

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 11

Electricity Traffic Environment
Predoction steps 1 2 3 1 2 3 1 2 3
Hawkes 8.30/68.09 10.59/70.98 9.60/50.22 / / / 12.69/67.08 11.12/53.33 11.40/47.44
Hawkes (regularized) 9.19/68.79 10.54/72.77 10.03/52.89 / / / 7.11/53.11 5.15/45.42 9.32/35.90
RMTPP 8.35/73.44 7.19/66.41 7.51/64.58 7.39/90.63 7.69/73.44 12.64/55.56 10.38/82.81 8.29/75.00 11.29/34.52
AERPP 8.76/67.19 6.49/64.06 7.20/49.48 5.09/95.31 5.05/78.91 11.28/61.90 8.53/79.69 8.76/74.22 10.35/44.05
RNN-ODE (TS ablated) 5.68/57.16 4.95/54.15 4.16/49.38 6.39/92.23 6.80/87.5 6.45/57.70 7.01/71.10 5.46/53.18 4.76/41.90
RNN-ODE (TS-input ablated) 5.83/63.76 4.70/62.05 4.35/53.87 6.39/92.23 6.74/90.21 6.32/54.76 5.49/76.47 5.86/53.88 4.58/50.05
RNN-ODE (TS-output ablated) 4.84/65.74 4.29/67.86 4.24/57.24 0.47/92.23 0.85/86.54 2.62/80.87 5.84/81.04 5.00/63.26 4.85/49.52
RNN-ODE 4.93/66.31 4.15/68.30 4.22/56.67 0.45/92.23 0.81/84.47 2.76/81.51 5.91/79.29 4.93/60.74 4.43/50.24

TABLE 4: Evaluation of deterministic multi-step prediction in terms of timing Mean Absolute Error and type Accu-
racy(MAE/ACC) on three datasets. Note that Accuracy (ACC) is in percentage.

dynamics of event sequences. Moreover, Hawkes (regular-
ized) performs slightly better than original Hawkes, but not
too much. This may be because that Hawkes (regularized) is
suitable for high-dimensional (C > 100) scene such as social
network [60], but dimension of events in our datasets is just
2 or 3.

Performance of RNN-based methods. RMTPP performs
even worse than traditional methods on probabilistic pre-
diction. One possible reason is that RMTPP aims to predict
timing and type of next event instead of to model the
intensity in a whole period of time. Unlike Hawkes process
which assumes exponential decay while no event occurs, the
intensity of RMTPP may increase exponentially. This can
significantly reduce performance when events are sparse,
especially when there is no event in the predicting window.
Compared with RNN-ODE, RMTPP can be viewed as a
semi-parametric model: although it uses RNN to capture the
effect of event occurrences, it still makes strong parametric
assumptions about the form of intensity between events.

On the other hand, RMTPP assumes event timing and
type are (conditionally) independent given history data.
Therefore, it can perform well on the task of deterministic
type prediction but badly on timing prediction at the same
time. This assumption is unrealistic as timing and type
have strong correlations in real world and may confuse
decision-makers who use the model. By applying attention
mechanism to RMTPP, AERPP constantly improves tim-
ing prediction accuracy. Both RMTPP and AERPP suffer
the problem of error accumulation caused by iteratively
prediction: performance decreases quickly with increasing
prediction steps. In contrast, RNN-ODE models suffer less
from accumulated error by modeling several events in the
window as a whole.

Impact of time-series. To investigate the impact of time-
series, we also introduce three ablated models. The only
difference between RNN-ODE and RNN-ODE (TS-input
ablated) is that RNN-ODE takes additional time-series as
input(so does RNN-ODE (TS-output ablated) to RNN-ODE
(TS ablated)). Tables 3 and 4 show that taking time-series
as additional input constantly improves performance. This
is intuitive because time-series provides more information
even when events are extracted from time-series (Electricity
and Traffic).

Finally, we find that predicting time-series together with
event sequence slightly improves model performance com-
pared with predicting events alone (RNN-ODE vs TS-output
ablated / TS-input ablated vs TS ablated), which can be
viewed as a multi-task learning problem. Note that [62]
shows that performance of sequence to sequence model can

be improved by multi-task learning. This also suggests the
correlation between time-series and event sequence.

5.4 Visualization results
future time-series, intensity & ground truth time-series,
events w.r.t forecast horizon

6 CONCLUSION

In this paper, we have formally address the problem of time
series forecasting and event sequence prediction given an
arbitrary future time window. This setting is of particular
practical importance for flexible decision making, while it
has been relatively little studied. We present a joint learning
framework based on conditional variational autoencoder to
formulate the forecasting problem as a conditional sequence
generation task, and the Neural ODE is adopted to model
the intensity function of temporal point process for event
modeling. Extensive experimental results on public bench-
marks show the effectiveness of our approach. For future
work, we are aimed to improve the scalability of our model
on high-dimensional temporal point process, which is a
long-standing challenge in temporal point process learning,
and it has not been mitigated by neural ODE.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 12

ACKNOWLEDGMENTS

The work is supported by China Major State Research De-
velopment Program (2020AAA0107600, 2018YFC0830400),
NSFC (U19B2035, 61972250, 72061127003) and SJTU Global
Strategic Partnership Fund (2020 SJTU-CORNELL).

REFERENCES

[1] W. W. Wei, “Time series analysis,” in The Oxford Handbook of
Quantitative Methods in Psychology: Vol. 2, 2006.

[2] S. Xiao, J. Yan, X. Yang, H. Zha, and S. M. Chu, “Modeling the
intensity function of point process via recurrent neural networks,”
in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[3] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection for
discrete sequences: A survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 24, no. 5, pp. 823–839, 2012.

[4] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The m4
competition: Results, findings, conclusion and way forward,” In-
ternational Journal of Forecasting, vol. 34, no. 4, pp. 802–808, 2018.

[5] Z. Mariet and V. Kuznetsov, “Foundations of sequence-to-
sequence modeling for time series,” in The 22nd International
Conference on Artificial Intelligence and Statistics, 2019, pp. 408–417.

[6] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan,
“Enhancing the locality and breaking the memory bottleneck of
transformer on time series forecasting,” in Advances in Neural
Information Processing Systems, 2019, pp. 5244–5254.

[7] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang,
and T. Januschowski, “Deep state space models for time series
forecasting,” in Advances in Neural Information Processing Systems,
2018, pp. 7785–7794.

[8] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “Deepar:
Probabilistic forecasting with autoregressive recurrent networks,”
International Journal of Forecasting, 2019.

[9] N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and
L. Song, “Recurrent marked temporal point processes: Embedding
event history to vector,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2016, pp. 1555–1564.

[10] E. Bacry, I. Mastromatteo, and J.-F. Muzy, “Hawkes processes in
finance,” Market Microstructure and Liquidity, vol. 1, no. 01, p.
1550005, 2015.

[11] S. Xiao, J. Yan, C. Li, B. Jin, X. Wang, X. Yang, S. M. Chu, and
H. Zha, “On modeling and predicting individual paper citation
count over time.” in IJCAI, 2016, pp. 2676–2682.

[12] W. Wu, J. Yan, X. Yang, and H. Zha, “Decoupled learning for
factorial marked temporal point processes,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, 2018, pp. 2516–2525.

[13] M. Bińkowski, G. Marti, and P. Donnat, “Autoregressive con-
volutional neural networks for asynchronous time series,” arXiv
preprint arXiv:1703.04122, 2017.

[14] L. Li, J. Zhang, Y. Zhang, J. Yan, Y. Jin, Y. Duan, and G. Tian,
“Synergetic learning of heterogeneous temporal sequences for
multi-horizon probabilistic forecasting,” in AAAI, 2021.

[15] O. Aalen, O. Borgan, and H. Gjessing, Survival and event history
analysis: a process point of view. Springer Science & Business Media,
2008.

[16] D. J. Daley and D. Vere-Jones, An introduction to the theory of point
processes: volume II: general theory and structure. Springer Science
& Business Media, 2007.

[17] Y. Ogata, “Space-time point-process models for earthquake occur-
rences,” Annals of the Institute of Statistical Mathematics, vol. 50,
no. 2, pp. 379–402, 1998.

[18] A. G. Hawkes, “Spectra of some self-exciting and mutually excit-
ing point processes,” Biometrika, vol. 58, no. 1, pp. 83–90, 1971.

[19] M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf, “Uncovering
the temporal dynamics of diffusion networks,” in Proceedings of the
28th International Conference on International Conference on Machine
Learning, 2011, pp. 561–568.

[20] Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec,
“Seismic: A self-exciting point process model for predicting tweet
popularity,” in Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, 2015, pp. 1513–
1522.

[21] H. Mei and J. M. Eisner, “The neural hawkes process: A neurally
self-modulating multivariate point process,” in Advances in Neural
Information Processing Systems, 2017, pp. 6754–6764.

[22] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud,
“Neural ordinary differential equations,” in Advances in neural
information processing systems, 2018, pp. 6571–6583.

[23] Y. Rubanova, R. T. Chen, and D. Duvenaud, “Latent odes for
irregularly-sampled time series,” arXiv preprint arXiv:1907.03907,
2019.

[24] J. Jia and A. R. Benson, “Neural jump stochastic differential
equations,” in Advances in Neural Information Processing Systems,
2019, pp. 9847–9858.

[25] H. van Houwelingen and H. Putter, Dynamic prediction in clinical
survival analysis. CRC Press, 2011.

[26] D. R. Cox, “Regression models and life-tables,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 34, no. 2, pp. 187–
202, 1972.

[27] J. D. Kalbfleisch and R. L. Prentice, The statistical analysis of failure
time data. John Wiley & Sons, 2011, vol. 360.

[28] H. Soleimani, J. Hensman, and S. Saria, “Scalable joint models for
reliable uncertainty-aware event prediction,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 8, pp. 1948–
1963, 2017.

[29] J. F. Tierney, L. A. Stewart, D. Ghersi, S. Burdett, and M. R. Sydes,
“Practical methods for incorporating summary time-to-event data
into meta-analysis,” Trials, vol. 8, no. 1, p. 16, 2007.

[30] P. R. Williamson, C. T. Smith, J. L. Hutton, and A. G. Marson,
“Aggregate data meta-analysis with time-to-event outcomes,”
Statistics in medicine, vol. 21, no. 22, pp. 3337–3351, 2002.

[31] P. Wang, T. Shi, and C. K. Reddy, “Tensor-based temporal multi-
task survival analysis,” IEEE Transactions on Knowledge and Data
Engineering, 2020.

[32] J. L. Katzman, U. Shaham, A. Cloninger, J. Bates, T. Jiang, and
Y. Kluger, “Deepsurv: personalized treatment recommender sys-
tem using a cox proportional hazards deep neural network,” BMC
medical research methodology, vol. 18, no. 1, p. 24, 2018.

[33] G. A. Bello, T. J. Dawes, J. Duan, C. Biffi, A. de Marvao, L. S.
Howard, J. S. R. Gibbs, M. R. Wilkins, S. A. Cook, D. Rueckert
et al., “Deep-learning cardiac motion analysis for human survival
prediction,” Nature machine intelligence, vol. 1, no. 2, pp. 95–104,
2019.

[34] H. Kvamme, Ø. Borgan, and I. Scheel, “Time-to-event prediction
with neural networks and cox regression,” Journal of machine
learning research, vol. 20, no. 129, pp. 1–30, 2019.

[35] C. Lee, W. R. Zame, J. Yoon, and M. van der Schaar, “Deephit:
A deep learning approach to survival analysis with competing
risks.” in AAAI, 2018, pp. 2314–2321.

[36] M. Sudell, R. Kolamunnage-Dona, and C. Tudur-Smith, “Joint
models for longitudinal and time-to-event data: a review of report-
ing quality with a view to meta-analysis,” BMC medical research
methodology, vol. 16, no. 1, p. 168, 2016.

[37] A. A. Tsiatis and M. Davidian, “Joint modeling of longitudinal
and time-to-event data: an overview,” Statistica Sinica, pp. 809–
834, 2004.

[38] D. Collett, Modelling survival data in medical research. CRC press,
2015.

[39] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[40] R. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder, Forecasting
with exponential smoothing: the state space approach. Springer Science
& Business Media, 2008.

[41] H. Lütkepohl, New introduction to multiple time series analysis.
Springer Science & Business Media, 2005.

[42] D. Salinas, M. Bohlke-Schneider, L. Callot, R. Medico, and
J. Gasthaus, “High-dimensional multivariate forecasting with low-
rank gaussian copula processes,” in Advances in Neural Information
Processing Systems, 2019, pp. 6824–6834.

[43] L. Li, J. Yan, X. Yang, and Y. Jin, “Learning interpretable deep
state space model for probabilistic time series forecasting,” in
Proceedings of the 28th International Joint Conference on Artificial
Intelligence. AAAI Press, 2019, pp. 2901–2908.

[44] Y. Wang, A. Smola, D. C. Maddix, J. Gasthaus, D. Foster, and
T. Januschowski, “Deep factors for forecasting,” arXiv preprint
arXiv:1905.12417, 2019.

[45] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to sequence learning
with neural networks,” Advances in NIPS, 2014.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 13

[46] C. Fan, Y. Zhang, Y. Pan, X. Li, C. Zhang, R. Yuan, D. Wu, W. Wang,
J. Pei, and H. Huang, “Multi-horizon time series forecasting
with temporal attention learning,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining. ACM, 2019, pp. 2527–2535.

[47] L. Vincent and N. Thome, “Shape and time distortion loss for
training deep time series forecasting models,” in Advances in
Neural Information Processing Systems, 2019, pp. 4191–4203.

[48] S. B. Taieb and A. F. Atiya, “A bias and variance analysis for
multistep-ahead time series forecasting,” IEEE transactions on neu-
ral networks and learning systems, vol. 27, no. 1, pp. 62–76, 2015.

[49] Z. Che, S. Purushotham, G. Li, B. Jiang, and Y. Liu, “Hierarchical
deep generative models for multi-rate multivariate time series,” in
International Conference on Machine Learning, 2018, pp. 783–792.

[50] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou,
“Patient subtyping via time-aware lstm networks,” in Proceedings
of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, 2017, pp. 65–74.

[51] E. De Brouwer, J. Simm, A. Arany, and Y. Moreau, “Gru-ode-bayes:
Continuous modeling of sporadically-observed time series,” in
Advances in Neural Information Processing Systems, 2019, pp. 7379–
7390.

[52] K. Sohn, H. Lee, and X. Yan, “Learning structured output repre-
sentation using deep conditional generative models,” in Advances
in neural information processing systems, 2015, pp. 3483–3491.

[53] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[54] A. Pagnoni, K. Liu, and S. Li, “Conditional variational
autoencoder for neural machine translation,” arXiv preprint
arXiv:1812.04405, 2018.

[55] T. Wang and X. Wan, “T-cvae: Transformer-based conditioned
variational autoencoder for story completion.” in IJCAI, 2019, pp.
5233–5239.

[56] D. Kingma and M. Welling, “Auto-encoding variational bayes,” in
arXiv:1312.6114, 2013.

[57] T. Gneiting and M. Katzfuss, “Probabilistic forecasting,” Annual
Review of Statistics and Its Application, vol. 1, pp. 125–151, 2014.

[58] T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, predic-
tion, and estimation,” Journal of the American Statistical Association,
vol. 102, no. 477, pp. 359–378, 2007.

[59] E. Bacry, I. Mastromatteo, and J.-F. Muzy, “Hawkes processes in
finance,” Market Microstructure and Liquidity, vol. 01, no. 01, p.
1550005, 2015.

[60] K. Zhou, H. Zha, and L. Song, “Learning social infectivity in sparse
low-rank networks using multi-dimensional hawkes processes,”
in Artificial Intelligence and Statistics, 2013, pp. 641–649.

[61] S. Xiao, J. Yan, M. Farajtabar, L. Song, X. Yang, and H. Zha,
“Learning time series associated event sequences with recurrent
point process networks,” IEEE transactions on neural networks and
learning systems, 2019.

[62] M.-T. Luong, Q. V. Le, I. Sutskever, O. Vinyals, and L. Kaiser,
“Multi-task sequence to sequence learning,” 2016.

Longyuan Li received the B.E. degree in Elec-
tronic Engineering from Huazhong University of
Science and Technology in 2015. He is currently
working toward the Ph.D. degree in the Depart-
ment of Electronic Engineering, Shanghai Jiao
Tong University, China. His research interests
include machine learning and data mining. He
focuses on probabilistic models and Bayesian
non-parametric models, for sequential data such
as multi-dimensional time-series. He is also in-
terested in deep probabilistic graphical models

and uncertainty estimation. He has published first-authored papers in
AAAI, IJCAI, and IEEE TNNLS.

Yunhao Zhang is a senior undergraduate in the
department of computer science and engineer-
ing, Shanghai Jiao Tong University. His research
interests include deep learning and data mining.
His recent research is mainly focused on se-
quential data modeling, especially for temporal
sequence forecasting and analysis.

Jihai Zhang is a senior undergraduate in the
department of computer science and engineer-
ing, Shanghai Jiao Tong University, China. His
research interests include machine learning and
data mining. He focuses on time series process-
ing, including deep clustering, probabilistic fore-
casting and representation learning. He is also
interested in generative models and contrastive
learning. He has published first-authored paper
in AAAI.

Junchi Yan (M’10) is currently an Associate Pro-
fessor with Shanghai Jiao Tong University. Be-
fore that, he was a Senior Research Staff Mem-
ber and Principal Scientist for industrial vision
with IBM Research where he started his career
since April 2011. He obtained the Ph.D. at the
Department of Electronic Engineering of Shang-
hai Jiao Tong University, China. He received the
ACM China Doctoral Dissertation Nomination
Award and China Computer Federation Doctoral
Dissertation Award. His research interests are

machine learning and visual computing. He serves as an Associate
Editor for IEEE ACCESS, Managing Guest Editor for IEEE Transactions
on Neural Networks and Learning Systems, Pattern Recognition Letters,
and Area Chair for CVPR21, ICPR20, Senior PC for IJCAI21, CIKM19.
He is the awardee of IBM Journal of Eminence and a Member of IEEE.

Yaohui Jin was once a Technical Staff Member
with Bell Labs Research China. After that he
joined Shanghai Jiao Tong University in 2002,
where he is a Professor with the State Key
Laboratory of Advanced Optical Communication
Systems and Networks and the Deputy Director
of Network and Information Center. His research
interests include civic engagement and open in-
novation, cloud computing network architecture,
and streaming data analysis. He is the Founder
of OMNILab, which is an open innovation lab

focusing on data analysis. He has published over 100 technical pa-
pers in leading conferences and journals and is the owner of over 10
patents. In 2014, OMNILab won the champion of CCF national big
data challenge among nearly 1000 teams, and was the champion of
the Shanghai open data innovation and creation competition. He has
served over 10 technical committees. He enthuses public service and
science popularization, actively promotes crowd engaged innovation,
and interdisciplinary collaboration.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018 14

Xiaokang Yang (M’00-SM’04-F’19) received the
B. S. degree from Xiamen University, in 1994,
the M. S. degree from Chinese Academy of
Sciences in 1997, and the Ph.D. degree from
Shanghai Jiao Tong University in 2000. He is
currently a Distinguished Professor of School of
Electronic Information and Electrical Engineer-
ing, Shanghai Jiao Tong University, Shanghai,
China. His research interests include visual sig-
nal processing and communication, media anal-
ysis and retrieval, and pattern recognition. He

serves as an Associate Editor of IEEE Transactions on Multimedia and
an Associate Editor of IEEE Signal Processing Letters. Prof. Yang is also
a fellow of IEEE.

	Introduction
	Related Works
	Event Prediction
	Time-Series Forecasting

	Preliminaries
	Conditional Variational Autoencoder
	Neural Ordinary Differential Equations

	Method
	Problem Formulation
	Generative Forecasting Framework
	Conditional Probability Modeling
	Probability of time-series.
	Probability of event sequence.

	Implementations
	Prior network and recognition model
	Generative model
	Training
	Forecasting

	Experiments
	Protocols
	Dataset description
	Implementation details
	Parameter settings

	Forecasting of time-series
	Evaluation metrics
	Baselines
	Results and analysis

	Forecasting of Events
	Data filtering
	Baselines
	Evaluation metrics
	Results and analysis

	Visualization results

	Conclusion
	References
	Biographies
	Longyuan Li
	Yunhao Zhang
	Jihai Zhang
	Junchi Yan
	Yaohui Jin
	Xiaokang Yang

