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In this paper, we present EatingTrak, an AI-powered sensing system using a wrist-mounted inertial measure-
ment unit (IMU) to recognize eating moments in a near-free-living semi-wild setup. It significantly improves
the SOTA in time resolution using similar hardware on identifying eating moments, from over five minutes to
three seconds. Different from prior work which directly learns from raw IMU data, it proposes intelligent
algorithms which can estimate the arm posture in 3D in the wild and then learns the detailed eating moments
from the series of estimated arm postures. To evaluate the system, we collected eating activity data from 9
participants in semi-wild scenarios for over 113 hours. Results showed that it was able to recognize eating
moments at three time-resolutions: 3 seconds and 15 minutes with F-1 scores of 73.7% and 83.8%, respectively.
EatingTrak would introduce new opportunities in sensing detailed eating behavior information requiring high
time resolution, such as eating frequency, snack-taking, on-site behavior intervention. We also discuss the
opportunities and challenges in deploying EatingTrak on commodity devices at scale.
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Additional Key Words and Phrases: Eating detection, neural networks, wrist-mounted IMU, arm posture
estimation

ACM Reference Format:
Ruidong Zhang, Jihai Zhang, Nitish Gade, Peng Cao, Seyun Kim, Junchi Yan, and Cheng Zhang. 2022. Eat-
ingTrak: Detecting Fine-grained Eating Moments in the Wild Using a Wrist-mounted IMU. Proc. ACM Hum.-
Comput. Interact. 6, MHCI, Article 214 (September 2022), 22 pages. https://doi.org/10.1145/3546749

1 INTRODUCTION
Journaling eating activities is frequently recommended as the first step to combat unhealthy eating
behaviors [16]. Traditional approaches for journaling eating activities usually require the user
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to manually log eating activities on paper or a smartphone app. It heavily relies on the user’s
self-motivation and determination, which may not be always reliable [16].

To free users from tedious self-reporting tasks, a variety of wearable technologies were invented to
automatically identify eating moments in the wild, which is the first step towards a fully automated
eating activity journaling system. However, the existing solutions have two limitations: 1) They
either require using a new hardware, which may not immediately applicable [5, 9, 30, 60, 64]; 2) The
ones using commodity wearables (e.g., smartwatch) can not recognize eating moments in high time
resolution. For instance, Thomaz et al. [48] used a wrist-mounted IMU to recognize eating moments
in the wild in time resolutions of 5 minutes, 30 minutes, 60 minutes with F1 scores of around 30%,
40%, and 76.1% respectively. Other work [17, 46] can only recognize eating moments in the unit of
a meal. In other words, these systems can not recognize the detailed eating moment within a meal,
such as the eating speed or frequency, which are critical indicators for healthy problems, such as
overweight and obesity problems [34]. Furthermore, many eating activities are much shorter than
a meal. For instance, eating snacks or fruits can happen in a few seconds to a few minutes. With
the time resolution of 5 minutes [48] or a meal [17, 46], detecting short eating moments would
be extremely challenging for the above eating sensing systems using a commodity smartwatch.
Therefore, there is an imminent need for a sensing system on a commodity smartwatch that can
recognize eating moments with a high time resolution. Based on this need, we developed the key
research question of this paper:

• Is it possible to significantly improve the time resolution of eating moment detection in the wild
on a commodity smartwatch without requiring any additional hardware?

To address this research question, we developed EatingTrak, an AI-powered eating moment
detection method, which is able to identify eating moments as short as three seconds in a near-
free-living scenario using a wrist-mounted IMU. EatingTrak first estimates the arm posture in 3D
using the data of the wrist-mounted IMU. Then the estimated arm posture is fed into a customized
deep neural network classifier to learn the latent temporal-spacial patterns of eating activities. To
evaluate EatingTrak, we collected over 110 hours of eating activities with a near-free-living semi-
wild setup from 9 participants where ground-truth were recorded using chest-mounted cameras
and labeled manually. Applying EatingTrak on this dataset, we found that it was able to recognize
eating moments with a semi-wild setup at time-resolutions of three seconds and 15 minute, with
F-1 scores of 73.7% and 83.8% respectively. To the best of our knowledge, this is the best time
resolution on recognizing eating moments with a comparable setup using a wrist-mounted IMU. To
examine the effectiveness of EatingTrak’s arm posture estimation algorithm, we conducted a study
with 7 participants showing that EatingTrak works reliably especially in estimating arm posture
for eating/drinking activities. To further explore the capabilities of EatingTrak, we conducted
an additional snack-detection study and a food/utensil type recognition study in a controlled
environment. Based on the encouraging results, we discuss the opportunities and challenges of
deploying EatingTrak on commodity smartwatches at scale to improve the eating journaling
experience for users.

The main contributions of this paper are:
• The first system that recognizes eating moments with a semi-wild setup by learning and
estimating 3D arm postures.

• An evaluation on a wrist-mounted IMU dataset on 113.8 hours of eating activities with a
semi-wild setup collected from 9 participants with manually labeled ground truth.

• Significantly improved the time-resolution of eating moment detection with comparable
setup using a commodity smartwatch (IMU) from five minutes [48] or a meal [17, 46] to three
seconds (F-1 73.7%).
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Fig. 1. Overview of EatingTrak. EatingTrak uses a single IMU sensor mounted on the dominant hand to
estimate the 3D arm posture, and then uses a deep neural network classifier to detect eating activities
at various time resolutions. The evaluation metrics with different time-resolution in (e) are specified in
section 5.2.2. (a) IMU module and wristband. (b) Collected multi-channel IMU data. (c) Estimated 3D arm
posture. (d) Deep neural network classifier. (e) Detected eating activities.

• An exploratory study on detecting snack-taking (chips) in a controlled environment.
• A discussion on how to apply EatingTrak on commodity smartwatches to improve food
journaling experience.

2 RELATEDWORK
Since the eating-activity recognition in EatingTrak relies on arm posture estimation, we discuss the
related works in two sections: 1) previous works in estimating body posture or using body posture
for activity recognition and 2) previous works that recognize eating activities using different sensing
methods and form factors.

Ref Applied sampling rate Time resolution F-1 score
Dong et al. [17] 15Hz a meal 81.5%

Stankoski et al. [46] 25Hz a meal ∗ 82%
Sharma et al. [42] 15Hz an EA 23.5%∗∗

Thomaz et al. [48] 25Hz
5min TS ∼25%∗∗∗

15min TS ∼40%∗∗∗

60min TS 76.1%
Morshed et al. [33] 25Hz a meal 87.3%

EatingTrak 8Hz 3 seconds 73.7%(69.9% in UI setting)
15min TS 86.2%(83.8% in UI setting)

Table 1. Summary of related work using single wrist-mounted IMU sensor in free-living scenarios. EP =
episode, TS = time segment, details specified in Section 5.2.2. Please note that the performance figures
are obtained on different datasets with different algorithms. This is a summary of comtribution instead of
comparison of performance.
∗: Although the evaluation was conducted based on seconds-level window, the ground truth recording were
based on participants’ meal-level self reports.
∗∗: EA: eating activity, a periods of continuous eating, average length of an EA is 14min. F-1 score derived
from the confusion matrix presented in the paper.
∗∗∗: Estimated from the figure presented in the paper.

2.1 Activity recognition using body postures
2.1.1 Body postures estimation. Most of the existing techniques that estimate human body skele-
ton/postures are from images captured by cameras. Traditional camera-based motion capturing
solutions either require users to wear a lot of markers, or require users to be captured by cameras
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from multiple views [45, 55, 57]. More recent projects successfully used deep convolutional net-
works to estimate 2D [12, 13, 21, 35, 50, 51, 53] and 3D [11, 28, 29, 47, 65] body postures from a
single camera. However, these camera-based systems cannot be used to capture the user’s body
posture in the wild where cameras are not available.
To capture body posture in the wild, several wearable-based systems have been developed.

However, most of them require the user to wear multiple motion sensors on different parts of
the body to capture body movement. For instance, Von Marcard et al. [52] and Huang et al. [22]
use 6 body-worn IMUs to estimate full body posture through optimization and learning-based
methods respectively. Wearing multiple sensors can be less practical and inconvenient for a user in
daily activities. Researchers have also explored body posture tracking focusing on limb motion
tracking [20], some of which only needs a smartwatch-like wrist-mounted IMU device [26, 43, 54].
We draw a lot of inspiration from ArmTrak [43] and ArmTroi [26], which demonstrated that they
can estimate the arm posture using a commodity smartwatch. However, their experiments focused
on a controlled lab setting, where the body direction is opportunistically estimated. It is unclear
how these systems would perform in the wild, where the body direction can constantly varying.
To address this issue, EatingTrak proposes a method which uses maximum likelihood estimation to
estimate the body direction in the wild.

2.1.2 Activity recognition from 3D body postures. Because body posture contains rich information
about the users’ activities, they have been widely used for human activity recognition. For instance,
Piyathilaka et al. [37] used a skeleton extracted from RGBD sensors to recognize 12 human activities.
Cippitelli et al. [15] used the body skeleton extracted from RGBD sensors and evaluated activity
recognition performances on activities related to active and assistive living-related actions. Nunez
et al. [36] explores using deep-learning methods to perform human activity and gesture recognition
based on full body skeletons.
To the best of our knowledge, we have not found any work that explores using the 3D arm

postures to recognize eating activities in the wild. The research question of whether using body
posture as the additional context info would improve the performance on recognizing eating
activities has not been explored.

2.2 Eating recognition with wearables
2.2.1 Eating recognition using customized form factor. In order to detect eating activities, researchers
have explored using sensors attached to different parts of the body to capture the motion or sound
associated with eating activities. For instance, many projects place sensors around the head to
detect eating episodes. Researchers have built earpieces with acoustic [3, 9], proximity [7, 8], and
motion [7] sensors to recognize eating periods. Researchers have also tried to put microphones on
the neck [10, 56] to capture eating gestures (e.g., chewing, drinking, swallowing). Using glasses
equipped with multiple sensors is another choice. Glasses equipped with EMG [58–61], load cell [14],
piezoelectric sensor [18]. Multi-modal sensors on glasses [5, 38] and necklaces[64] are also used.
Some even demonstrates promising performance in detecting free-living eating activities[6]. Fusing
sensors placed at various locations such as on upper and lower arms [2, 23], wrists, ear and head [30–
32], wrist and neck [62] have also demonstrated promising results. Specifically, cameras in various
form factors are widely used to analyse eating event from images [5, 30–32, 38, 49]. The recent
papers using head-mounted device have already achieved promising performance on detecting
eating moments in the wild. However, the above systems all require designing a new form factor or
adding hardware components, which is known to be time consuming. In other words, they may
not be immediately available to users in the near future.
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2.2.2 Eating recognition using a wrist-mounted IMU. Smartwatches or wristbands are one of the
most common commercial wearable products. All these commodity devices have built-in IMUs
to detect the motion on the wrist. Researchers have explored using the IMU on a wrist-mounted
device to detect eating activities. Some systems have achieved encouraging performance on recog-
nizing eating activities in controlled or in-lab settings [24, 63], or during a meal in less structured
environments [39, 40, 44]. Recent work conducted by Luktuke and Hoover et al [27] analyzed the
eating intake gestures within a meal in a restaurant using a wrist-mounted IMU. However, it did
not distinguish eating moments with other daily activities in the wild. Recognizing eating activities
with a single wrist-mounted device in the wild has known to be challenging due to the diversity of
eating and other activities [30, 42, 62]. As a result, the time resolution of detecting eating moments
is relatively low. Thomaz et al. [48] can recognize eating activities with a time-resolution of 5 to
30 minutes with a F1 score around 30% to 45% respectively. Most recent work can detect eating
activities in the unit of a meal (self-reported) [17, 41, 42, 46], some with impressive performance
under large-scale dataset [33]. However, research has shown that only about 40% of time during
a meal involves actual eating gestures [25]. Only detecting the start and end of a meal misses
critical information on health, such as eating frequency, which is critical indicator for overweight
or obesity [34]. Furthermore, in order to recognize eating activities with shorter period such as
snacks, fruits, a much higher time resolution is needed. Based on the best of our knowledge, none
of the prior work [17, 41, 42, 46, 48] has tried to detect the eating period as short as a few seconds.
To facilitate the comparison, we summarize the setting and performances of the related work

using wrist-mounted IMU for eating detection in Table 1. It is clear that EatingTrak has significantly
improved the time resolution of eating detection to 3 seconds with F1 score of 73.7% and 69.9%
using user-dependent and user-independent models respectively. If we adopted the same metrics as
as used in [48] with a time segment window size of 15 minutes, the F-1 score on recognizing eating
activities using our system climbed to 83.8%, significantly outperforming ∼ 40% in [48] (15min
time segment in the table. Admittedly, a direct comparison is not possible due to the adoption of
different dataset, such gap is still encouraging in improving time resolution. The details of how we
calculate this result is explained in Section 5.2.2).

3 METHOD
In this section, we first describe how EatingTrak operates in principle. We then present EatingTrak’s
processing pipeline.

3.1 Theory of Operation
EatingTrak was developed based on the observation that one key challenge of identifying eating
moments frommiscellaneous body movements in the wild using a wrist-mounted IMU (acceleration
and angular velocity), compared to other systems using customized hardware [5, 9, 30, 60, 64], is
the lack of enough contextual information of body posture. As a result, the eating gesture (raising
the wrist towards the mouth) can be highly similar to other wrist movements in daily activities,
if only examining the movement on the wrist [17, 46, 48]. For instance, picking up a cup from
the desk to the mouth has similar movements with part of the waving gesture, except that the
arm is higher than the shoulder in the latter case. Since lacking accurate contextual information
of the wrist motion, in order to increase the accuracy of eating detection, the system requires
more data or a larger window to make a confident prediction. Many of these confusions can be
clarified if the system has more contextual information on the eating gestures, such as the arm
posture in 3D including the movements and positions of wrists and the elbow, as the arm posture
intuitively distinguishes eating behaviors from others. For instance, eating with utensils typically
involves moving the arm towards the mouth, rotating the wrist, and moving the arm back down.
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With contextual information of the relative position and orientation of the arm against the body,
such gesture sequences have distinct features. Based on this observation, we propose the working
hypothesis of EatingTrak:

• The arm posture, if can be calculated, can significantly improve the performance of detecting
eating moments in the wild.

To verify this hypothesis, we implement EatingTrak, which contains two steps. First, it estimates
the arm postures in 3D body space according to data collected by the IMU. Second, it trains a
supervised customized deep neural network classifier on the arm posture estimation to capture the
latent temporal-spacial patterns of eating activities. The structure of the system is presented in
Figure 1.

3.2 Estimating 3D arm posture from a wrist-mounted IMU in the wild
An arm posture is defined as a combination of the elbow orientation 𝑜𝑒𝑏 relative to the body and
the wrist orientation 𝑜𝑤𝑏 relative to the body [4] (𝑒 as in elbow,𝑤 as in wrist, 𝑏 as in body, 𝐸 as in
Earth). In order to estimate the 3D arm posture of the wearing arm using data from the IMU, we
need 3 steps: 1) estimate the body direction 𝑑 , 2) use the estimated body direction 𝑑 and the wrist
orientation relative to the Earth 𝑜𝑤𝐸 to calculate 𝑜𝑤𝑏, and 3) use 𝑜𝑤𝑏 to estimate 𝑜𝑒𝑏. We propose
the weighted arm posture estimation to implement step 3), and body direction estimation is proposed
to implement step 1). Step 2) is mathematically determined. Our arm posture estimation technology
is developed based on previous work of ArmTrak [43], which was only evaluated in controlled
environments with the assumption that body direction does not change much. Unfortunately, it
does not work well in the free-living condition, where the body direction constantly changes. Based
on their work, we designed weighted arm posture estimation and body direction estimation to
enable it to be applied in free-living scenarios.

3.2.1 Weighted arm posture estimation. Because the human body skeleton is fixed, given a certain
wrist orientation 𝑜𝑤𝑏𝑘 , the arm posture estimation process can be viewed as finding the most likely
elbow orientation ˆ𝑜𝑒𝑏𝑘 , which can be calculated as

ˆ𝑜𝑒𝑏𝑘 = E𝑝 (𝑜𝑒𝑏 |𝑜𝑤𝑏𝑘 ) (𝑜𝑒𝑏) =
∫

𝑜𝑒𝑏𝑝 (𝑜𝑒𝑏 |𝑜𝑤𝑏𝑘 )d𝑜𝑒𝑏 (1)

To achieve this, we first iterate all possible human arm postures based on the empirical movement
ranges of human joints as described by Andriluka [4] and use the algorithm proposed by Akhter et
al. [1] to remove invalid postures. Through this process, we can obtain a set which contains all the
possible elbow orientations conditioned on 𝑜𝑤𝑏𝑘 , 𝑂

𝑒,𝑏𝑜𝑑𝑦

𝑘
= {𝑜𝑒,𝑏𝑜𝑑𝑦1 , 𝑜

𝑒,𝑏𝑜𝑑𝑦

2 , · · · , 𝑜𝑒,𝑏𝑜𝑑𝑦𝑛𝑘 }. Hence,
the arm posture estimation process can be described as:

ˆ𝑜𝑒𝑏𝑘 =

𝑛𝑘∑︁
𝑖=1

𝑜𝑒𝑏𝑖𝑝 (𝑜𝑒𝑏𝑖 |𝑜𝑤𝑏𝑘 ) (2)

From the equation above we can see that, to calculate the estimation, the key step is determin-
ing the probability distribution 𝑝 (𝑜𝑒𝑏 |𝑜𝑤𝑏𝑘 ). We use the empirical distribution to represent this
probability distribution in eating activities. To achieve this, we conducted a pilot study to record
every 𝑜𝑤𝑏𝑘 and every corresponding 𝑜𝑒𝑏𝑖 in eating activities. One of the researchers wore one IMU
sensor on the lower arm and one IMU sensor on the upper arm to record 𝑜𝑤𝑏 and 𝑜𝑒𝑏 respectively
while eating for about 6 hours in total. The IMU on the lower arm was worn in the same way as in
the user study described in Section 4.1. The IMU on the upper arm was worn in a way such that all
its axes were aligned with the IMU on the lower arm when standing upright with the arm resting
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tightly at the side of the body. We then calculate the estimated conditional probability:

𝑝 (𝑜𝑒𝑏𝑖 |𝑜𝑤𝑏𝑘 ) =
𝑓 (𝑜𝑒𝑏𝑖 )∑𝑛𝑘
𝑗=1 𝑓 (𝑜𝑒𝑏 𝑗 )

(3)

where 𝑓 denotes frequency. For the 𝑜𝑒𝑏𝑖 that are not recorded, we estimate its conditional
probability as the following:

𝑝 (𝑜𝑒𝑏𝑖 |𝑜𝑤𝑏𝑘 ) = 𝑝 (𝜖 = 𝑜𝑒𝑏𝑖 − 𝑜𝑒𝑏 𝑗 ) , 𝜖 ∼ N(𝑝 (𝑜𝑒𝑏 𝑗 |𝑜𝑤𝑏𝑘 ), 𝜃 ) (4)

where 𝑜𝑒𝑏 𝑗 is 𝑜𝑒𝑏𝑖 ’s neighboring elbow orientation recorded and 𝜃 is a manually set hyperparameter.

3.2.2 Body direction estimation from a wrist-mounted IMU data. As shown above, to estimate the
arm posture, we have to know the orientation of wrist relative to the body 𝑜𝑤𝑏, which can be
calculated given a certain wrist orientation relative to the Earth 𝑜𝑤𝐸 and a body direction 𝑑 . Since
the IMU sensor can only provide 𝑜𝑤𝐸, a body direction estimation is needed. The previous work
[43] used opportunistic sensing to estimate the body direction. They obtain the body direction from
the wrist orientation, when the arm falls down. However, in the wild, if the body direction changes
frequently, and the arm does not always fall down, this opportunistic sensing approach may not
work well. In order to address this issue, we use Maximum Likelihood Estimation to estimate the
body direction.
Given a certain wrist orientation relative to the Earth, the corresponding wrist orientation

relative to the body is a function of the body direction: 𝑜𝑤𝑏𝑘 = 𝑔(𝑑). Therefore,
𝑝 (𝑜𝑤𝑏 = 𝑜𝑤𝑏𝑘 ) = 𝑝 (𝑜𝑤𝑏𝑘 ;𝑑) (5)

Assuming all the recorded wrist orientations relative to the body are 𝑜𝑤𝑏1, 𝑜𝑤𝑏2, · · · , 𝑜𝑤𝑏𝐾 , it is
obvious that,

logL(𝑑) =
𝐾∑︁
𝑘=1

log𝑝 (𝑜𝑤𝑏𝑘 ;𝑑) =
𝐾∑︁
𝑘=1

log
𝑓 (𝑜𝑤𝑏𝑘 )∑𝐾
𝑗=1 𝑓 (𝑜𝑤𝑏 𝑗 )

(6)

where 𝑓 denotes frequency. According to Maximum Likelihood Estimation, it is easy to know
that we can get the estimation of 𝑑 when logL(𝑑) reaches its maximum. Since the estimation is
performed per frame, a Kalman filter is applied subsequently to remove the noise in estimation.

We demonstrate the tracking performance of our arm tracking algorithm in Section 5.1. We then
further demonstrate in our ablation study that our 3D arm posture estimation can significantly
improve eating activity detection performance, especially in the free-living scenarios where the
users are engaged in complicated activities apart from eating. Details and further discussions of
the ablation study is specified in Section 5.6.

3.3 Deep neural network
Because an eating intake gesture contains a time-series of arm postures in 3D [19], we decided to
use a deep neural network classifier to learn the temporal-spatial patterns of eating activities from
the arm posture estimation.

3.3.1 Data preprocessing. Given the series of data on arm posture estimation, we use a sliding
time window to segment the arm posture estimation data into multivariate time series with the
same shape of 𝜏 ×𝑀 . Each data segment X consists of multidimensional feature values in each
frame of the sliding time window: X = [X1,X2, · · · ,X𝜏 ], where 𝜏 is the length of the sliding time
window. X𝑖 = [𝑥1, 𝑥2, · · · , 𝑥𝑀 ], where𝑀 is the number of features and 𝑥𝑖 is the value of the feature
in the 𝑖𝑡ℎ dimension. The features we used are specified in Table 2. Then, we add labels to the data
segments according to the ground truth and get the dataset 𝐷 = {(X1,Y1), (X2,Y2), · · · , (X𝑁 ,Y𝑁 )}.
Y𝑖 = 1 if there is a ground truth intake in the middle of the time window of X𝑖 , where 𝑘 is the class
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of the intake; Y𝑖 = 0 if there is no intake in the time window of X𝑖 . In this form we consider the
eating gesture detection as a problem of time series classification.

Features from the reconstruction
Wrist’s acceleration relative to the body (3D vector)
Wrist position relative to the body (3D coordinates)
Elbow position relative to the body (3D coordinates)

Palm’s facing direction relative to the body (3D vector)
Palm’s extreme facing direction relative to the body (3D vector) ∗
Body’s facing direction relative to initial facing direction (angle)

Estimated 5 DoFs ∗∗

Table 2. Features from the Reconstruction.
∗ For the right hand, this is the facing direction of the palm if rotate the lower arm clockwise to the extreme
extent without changing the position of the elbow and wrist.
∗∗ The 5 degrees of freedom of the arm that represent the arm posture are described by Andriluka [4].

3.3.2 Classifier implementation. Given the dataset 𝐷 , we need to train a classifier to project the
input X to the probability distribution over the labels. We use a Recurrent Neural Network 𝑑𝜃 as
the information extractor to perform the following operation:

h𝑖 = 𝑑𝜃 (X𝑖 , h𝑖−1) 𝑓 𝑜𝑟 𝑖 = 1, · · · , 𝜏 (7)

h𝜏 contains important information of the input X. In our experiments, 𝑑𝜃 is parametrized by Gated
Recurrent Units and initialized with zero vectors for 𝑖 = 0. A fully connected layer with softmax as
activation function is used to output the probability distribution over the classes:

Ŷ𝑖 (X) =
exp(h𝜏w𝑖 + 𝑏𝑖 )∑𝐾
𝑘=1 exp(h𝜏w𝑘 + 𝑏𝑘 )

(8)

where Ŷ𝑖 denotes the probability of X belonging to class 𝑖 out of 𝐾 classes.𝑤𝑖 and 𝑏𝑖 denote the
weights and the bias term of the fully connected layer.

4 USER STUDY
In this section, we present the setup and procedures of the user study that we have conducted. We
collected eating activity data in a near-free-living semi-wild setup without any constraints on the
participants.

4.1 Procedures
We used a wristband with an IMU sensor (Adafruit BNO0551) mounted on an ESP32 Feather board2.
The data was saved to a on-board micro SD card. Although the data collection device was not a
commodity smartwatch, IMU sensors are easily available on commodity smartwatches. Therefore,
this wristband is equivalent to a commodity smartwatch in the context of collecting IMU sensor
data. Participants were asked to wear the wristband on their dominant hand. The wristband was
worn such that the x-axis of IMU was pointing from the elbow towards the wrist and the z-axis
was pointing outwards. A chest-mounted GoPro (pointing upwards towards the head) was used to
collect ground truths.

1https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor
2https://www.adafruit.com/product/3405
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We recruited 9 participants (P1-P9, 6 male, 3 female) for the study. We collected data for 6 sessions
in different days for each participant. In each session, after setting up the device, the participant was
free to leave the lab and was asked to return the devices after at least 2 hours. The only instruction
we gave was that they needed to have at least one meal during this time period and no other
restrictions were imposed. In other words, the participants were free to eat any food at any place
at any time or do any other activities.

4.2 Ground truth annotation
We define one intake gesture as the process in which the participant puts the food using their
hands or utensil towards the mouth, and then relaxes the arm. The empirical average duration
of one intake in our user study was about 3 seconds. The researchers manually labeled the video
recorded by GoPro to identify the time point that the food/utensil is deepest into the mouth as the
intake time. In this way, every intake gesture is represented by a single timestamp. The timestamps
of the GoPro and IMU modules were synchronized.

4.3 Dataset statistics
We examined the composition of the dataset. In total, we collected 6831.3 minutes (113.8 hours) of
data, with an average sampling rate around 30 Hz. The total recording duration of all participants
ranges from 719 to 795 minutes (std=23.4min). In total, 3178 intakes were captured. On average,
every participant had 58.9 intakes every session (min=7, max=277, std=52.0), showing great variance
in how much intakes they took in different sessions.
We then examine how much eating/drinking took up during the entire recording. To do this,

we consider every eating period to start 30 seconds before the first intake and end 30 seconds
after the last. The time in between is considered to be in a eating/drinking event. Using this
method, 13.1% of all data recorded were eating/drinking events. Across different participants, the
time that he/she was eating/drinking ranges from 58.6 to 152.9 minutes (std=37.6min). In order
to understand the distribution of eating/drinking events better under different time granularities,
we apply similar calculations but with the metrics specified in Section 5.2.2. While limiting the
duration of an eating/drinking event to 3 seconds, only 2.3% of all data were eating/drinking. Using
the 5-minute eating episode formation method as described in Section 5.2.2, 13.6% of all recorded
data were during an eating episode. Similarly, 16.8% of all recorded data were in an time segment
with eating/drinking activities using a 15-minute time segment window as specified in Section 5.2.2.

We then tried to manually label the types of eating/drinking events of each intake based on the
ground truth video captured by a chest-mouted GoPro. In total, we identified 8 different types of eat-
ing/drinking events: drinkingwith a bottle/cup/straw, eatingwith spoon/fork/hand(s)/finger/chopsticks,
among them, eating with chopsticks/spoon/fork were most commonly seen. The distribution of
these types is illustrated in Table 3. We also tried to identify the food types that the participants
consumed. However, due to the vast diversity in food types, special camera angle (from chest point
towards the face) and lighting conditions, we were not able to identify all food types. Among
them, noodles, liquid (soups, milk, etc.), burger/sandwiches, salad, and rice were most commonly
consumed. Similarly, due to the limitation of the view angle, we were unable to clearly determine
all situations of eating/drinking events. Based on limited observations, dining table and desk are
the most common places to eat, but other places such as couch and even eating while walking were
also observed. These results show that although each session of our dataset was capped at about 2
hours, the data we collected are still very diverse.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. MHCI, Article 214. Publication date: September 2022.



214:10 Ruidong Zhang et al.

Event type Drinking Eating
bottle cup straw spoon fork hand fingers chopsticks

Portion 3.8% 1.9% 1.6% 29.4% 17.4% 4.0% 0.5% 41.5%
Table 3. Composition of eating/drinking events in the dataset

5 EVALUATION
In this section, we first evaluated the arm posture estimation algorithm. We then evaluated our
eating detection system with different setups including time resolution, user-dependent (UD) versus
user-independent (UI) models using on the data we collected from the user study. We report the
performance in three time resolutions: seconds-level, defined as eating moment detection with
time resolution of under 1 minute; minutes-level, defined as eating moment detection with time
resolution of 5-30 minutes of time segment; and episode-level, defined as eating moment detection
with time resolution of 5-minute eating episode. Details of these metrics are specified in Section 5.2.2.
In order to investigate whether the estimated arm posture helped in the recognition task compared
to using IMU data only, we conducted an ablation study with only raw IMU data to demonstrate
the effectiveness of our proposed arm posture estimation algorithm.

5.1 Evaluation of the arm posture estimation algorithm
In order to examine the effectiveness of EatingTrak’s arm posture estimation algorithm, we con-
ducted an extra scripted study with 7 participants (average age 22.6, std=1.6, 5 female, all right-
handed) evaluating the performance of 3D arm posture reconstruction in the context of eating
detection.

During the study, we asked each participant to wear a wrist-mounted IMU (same as used in the
semi-wild study) and conduct activities including eating with spoon/fork/hand, drinking, using
the cellphone, chatting, using laptop and walking, each activity lasting about 3 minutes. We used
mediapipe with a laptop RGB camera as the ground truth for arm posture. To make sure that the
body was properly captured by the camera, while walking, the participants were instructed to
walk within a trapezoid area (distance from the camera was 1.5-3.5m, area 6.5m2) marked on the
ground. In all other activities the participants sat about 1.5m in front of the camera. Frames where
the arm was not fully captured were discarded. The lengths of the participants’ upper and lower
arms were measured and used to normalize the ground truth and reconstructed arm postures. The
study lasted 25.2 minutes for each participant. We demonstrated that our arm posture tracking
algorithm achieved a Median Absolute Error (MAE) of 5.9 and 11.0 centimeters in 4 eating and 4
non-eating activities, respectively. Errors were calculated as the error in distance represented by
3D coordinates after mapping the pixels according to measured arm lengths. Error of the elbow
tracking was slightly lower than that of wrist position tracking. Specifically, results in Figure 2(f)
indicates that EatingTrak estimates the arm posture quite reliably while the user is eating/drinking.
In other activities, the error increases. Meanwhile, we observed that the estimation results were
quite stable while eating/drinking but jumping around dramatically in activities especially like
walking. This is because our weighted arm posture estimation was optimized for eating/drinking
activities.

5.2 Evaluation setup
5.2.1 Experiment configuration. We conducted UD and UI experiments on the collected semi-
wild dataset. We conducted leave-one-session-out (UD) and leave-one-participant-out (UI) cross-
validations.
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To test the performance of the system under lower sampling rate to save power, we down-
sampled the input data to 8 Hz. When training, the length of the sliding time window used in data
segmentation was 25 frames (about 3 seconds, the average length of an intake gesture observed in
the study) and the stride was 5 frames. Specifically, we skipped any windows that overlap within a
±1.5s range of an intake moment to avoid confusing the classifier. We duplicated the intake data
samples until intake/non-intake data samples were comparable. When testing, we used a sliding
time window of the same size with a stride of 1 frame to generate testing data. If the prediction of
the classifier was positive for a testing time window, we considered there was an intake detected
at the middle of the time window. In this way, we generated the frame-level prediction. We set
the dimension of the Gated Recurrent Unit hidden state to 512. In the ablation study, because the
number of features was smaller, we enlarged the hidden state dimension until the number of total
parameters is the same to make the comparison fair. We used the Adam optimizer with learning
rate 0.001.

5.2.2 Evaluation metrics. Classification accuracy may not well represent the performance of the
system due to the highly imbalanced dataset (the users were not eating for most of the time). Instead,
we used precision, recall and F-1 score as the evaluation metrics. It is worth noting that to calculate
the overall precision, recall, and F-1 score, we added up the TP, FP and FN of all participants, and
then use the overall TP, FP and FN to calculate the metrics instead of simply averaging the metrics
of different participants. This is because different participants have different number of intakes.
Simply averaging the metrics of all participants may not represent the characteristics of the whole
dataset.

5.3 Seconds-level evaluation
Seconds-level evaluation refers to eating moment detection with time resolution of under 1

minute. With this metric, we evaluate how well our system can detect eating moments with a
short duration. To do this, we use a 𝑛𝑙𝑒𝑛𝑔𝑡ℎ-frame sliding window with a stride of 1 frame to
transfer the frame-level prediction into intake-level prediction. If the number of detected intakes
within the window exceeds a certain threshold 𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , then we consider the whole window as a
positive prediction. Since the stride is 1 frame, there can be overlaps between neighboring positive
windows. We merge all positive windows that overlapped with each other, and generate a series
of positive prediction periods. We count TP, TN, FP as illustraed in Figure 3. We then calculate
precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃 , recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁 , and F1 = 2×precision×recall
precision+recall .

We set 𝑛𝑙𝑒𝑛𝑔𝑡ℎ = 25 and 𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 4. In the UD setting, EatingTrak achieved an average
detection precision, recall, and F-1 score of 76.2%, 71.3% and 73.7%, respectively. In the UI setting, the
detection precision, recall, and F-1 score were 67.6%, 70.7%, and 69.1%, respectively, as demonstrated
in Figure 2(a). Detection performance across different participants are shown in Figure 2(b), ranging
from 49.8% (UD) and 36.4% (UI) for P9 to 88.9% (UD) and 88.9% (UI) for P5, with SD=12.6% (UD) and
17.7% (UI). Based on our observation, in most sessions with low F1 score, the participant usually
raised both hands near the mouth to eat (e.g., burger, sandwich). In this way, the hand movement
is much less obvious and has less patterns. We detail this discussion and potential solutions in
Section 6.2.
5.3.1 Impact of window length. In the evaluation above, the window length of three seconds was
empirically decided based on our observation of a typical intake gesture. This input window length
decides how much the model can “see” in each data point. To find out the impact of the length
of window on the performance of the system, we conducted another experiment with different
lengths of windows ranging from 1 second to 9 seconds. The results presented in Figure 2(c) show
that performance increases as window length increases. This is potentially because intakes are
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Performance of eating/drinking detection with the semi-wild setup. UD: user-dependent, UI: user-
independent. (a) Seconds-level. (b) Seconds-level performance across all participants. (c) Seconds-level per-
formance with different window size. (d) Minutes-level performance with different segment window. (e)
Episode-level. (f) Evaluation of arm posture estimation.

usually repeated. By “seeing” more of these repeated gestures, the model learns the pattern clearer.
When the length of the window increases to 9 seconds, F1 score reaches 79.0%. This result also
implies that the performance of EatingTrak can be higher with increased window length. However,
longer window length also means the system requires more time before a decision can be made,
which may not work well for certain applications, such as providing in-situ intervention. We plan
to further explore this issue in the next step.
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Fig. 3. Metric for seconds-level evaluation. Ground truth intakes (red lines) covered by predicted intakes
(green rectangles) are considered true positives (TP). Ground truth intakes not covered by any predicted
intakes are recorded as false negatives (FN). Predicted intakes that do not cover any ground truth intakes are
recorded as false positives (FP).

5.3.2 Estimation of delay in just-in-time intervention. We are also interested in the delay in the
seconds-level evaluation, since this is critical for applications such as just-in-time intervention
would be useful. With our ground truth annotation method, every intake was represented by the
moment that the food was deepest into the mouth. In our seconds-level evaluation, an intake is
only counted as true positive if the predicted window covers the labeled moment. This means that
if the system is successful in detecting an intake, it has to be able to detect it before the food is
deepest into the mouth. In practice, we used a sliding window approach which looks 1.5s into the
future, indicating a systematic delay of 1.5s. With this in mind, we then analyzed the runtime of
our processing pipeline. We tested our pipeline on a Workstation with AMD Threadripper 3960X
CPU and RTX 2080Ti GPU. Our system takes about 15ms to predict each frame. With all things
considered, our system has a theoretical delay of about 1.5s if running in real-time at a predicting
time-resolution of 3s. However, we would like to acknowledge that this delay was computed
theoretically and might not reflect real life performance.

5.4 Minutes-level evaluation

Fig. 4. Metric for minutes-level evaluation. Each time segment is 5-30min long. For a time segment, if the
number of ground truth intakes exceeds certain amount, then it is considered a ground truth eating segment.
Accordingly, if the number of predicted intakes exceeds a certain amount, then it is considered a predicted
eating segment. TP, FP and FN are then calculated on a time segment basis.

Minutes-level evaluation refers to eatingmoment detection with a time resolution of 5-30 minutes,
using a metric similar to the one used in Thomaz et al. [48]. This metric is designed to evaluate
how our system can detect continuous eating activities that last for over 5 minutes such as a meal.
We first divide the whole session into time segments [48] of equal length (5-30min). For each time
segment, we examine the number of ground truth intakes and number of positive predicted frames.
To focus on continuous eating periods and remove discrete random intakes, if a time segment of
𝑡𝑤 minutes contains more than 𝑡𝑤+20

5 ground truth intakes (from 5 intakes within 5 minutes to
10 intakes within 30 minutes), then it is considered a ground truth eating segment. If more than
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(2𝑡𝑤 + 40) frames of all frames within a time segment of 𝑡𝑤 minutes are predicted as positive, then
this segment is considered as a predicted eating segment (predictions are made on a frame-by-frame
basis, therefore, the number of positive frames are significantly larger than the number of ground
truth intakes because multiple neighboring frames near an intake can all be predicted as positive).
We then calculate TP, FP and FN accordingly, as illustrated in Figure 4. We then report the precision,
recall and F1 score.

We set the time segment length from 5 minutes to 30 minutes, which is similar to [48]. We did not
extend the segment length to 60 minutes because one session in our dataset lasted about 2 hours.
Results showed that EatingTrak achieved an F-1 score of 77.2% (UI) and 80.6% (UD) at 5-minute
segment length and 82.4% (UI) and 85.9% (UD) at 30 minutes. Performance slightly increased and
then flattened with increasing segment lengths, as illustrated in Figure 2(d). Although a rigorous
direct comparison is not possible due to the differences in the datasets, our results significantly
outperformed the results from Thomaz et al. [48]. Due to lack of the specific sensor data (sensor
orientation) required, we could not directly apply our algorithm on their dataset. We admit this
comparison may not be completely fair, as many variables are different in the two studies, such as
participants, the size of the dataset, and the machine learning pipeline. Our outstanding results
can be introduced by a compounding effect of all the factors above. Thus, we intent to present all
details of the experiment so that the researchers can estimate the improvements introduced by our
proposed system.

5.5 Episode-level evaluation
In food journaling applications, it is also important to record eating/drinking episodes outside of

a meal. To evaluate how well our system can detect eating episodes from both within and outside of
a meal, we adopt an episode-level metric similar to the one used in FitByte [5]. We assume that two
consecutive intake episodes should be at least 5 minutes apart. Therefore, we merge neighboring
intakes that are within 5 minutes and form intake episodes using the method illustrated in Figure 5.
We then drop the episodes that are less than 5 minutes long. We calculate precision, recall and F-1
score on an episode level. Similar to FitByte, we also calculate coverage which is defined as the
percentage of intake episodes that are covered by predicted intake episodes.

Fig. 5. Metric for episode-level evaluation. Ground truth intakes that are less than 5min apart are merged to
form an eating episode, so are the predicted intakes. TP, FP and FN are then calculated on an episode basis.

We found EatingTrak achieved an overall precision, recall and F-1 score of 64.6%, 89.5%, and
75.0%, respectively, in UD settings. In UI settings, precision, recall and F-1 score were 58.9%, 93.0%,
and 72.1%, respectively. The coverage in UD and UI settings were 85.0% and 83.7%, respectively.
Compared with the UI results (precision 84.6%, recall 78.6%, F-1 score 81.5% and coverage 89%) in
FitByte [5], our results were lower by around 5%-10%. However, EatingTrak has achieved arguably
comparable performance on detecting eating episodes with the semi-wild setup using a single
wrist-mounted IMU (equivalent to a smartwatch), compared to FitByte, which uses a customized
glassframe with multiple sensors.
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5.6 Ablation study
It is important to understand how much the estimated arm postures can improve the performance
compared to previous systems [17, 48, 62] using the data from IMU only. To investigate this matter,
we conducted an ablation study comparing the eating detection performance using estimated arm
postures compared to only using the raw IMU data as shown in previous work[17, 48, 62]. We used
the seconds-level evaluation as specified in Section 3 with a time resolution of 3 seconds. We use a
UD approach for training and testing. The input data of the deep neural network pipeline with
and without estimation are specified in Table 2 and Table 4, respectively. It is worth noting that
the feature dimension in the ablation study is smaller. This is because our arm posture estimation
introduces extra useful features. Apart from the input data, all other configurations were identical.

Features from the reconstruction
Wrist’s acceleration relative to the Earth (3D vector)

Wrist’s gravity (3D coordinates)
Wrist’s orientation relative to the Earth (quaternion)
Wrist’s orientation relative to the Earth (Euler angles)

Table 4. Features from the reconstruction

Results show that the average F-1 score was 60.2% using only raw IMU data (without arm posture
estimation), much lower than 73.7% when arm posture estimation was applied. We conducted a
one-way ANOVA test, showing that performance with arm posture estimation across all 54 sessions
was significantly better than without (F(1, 106) = 6.69, p = 0.011). This result confirms positively
about our working hypothesis that using the estimated arm posture can significantly improve the
performance on detecting eating moments with the semi-wild setup.

5.7 Snack study
To examine EatingTrak’s capability in detecting short eating period out of a meal, we conducted an
additional preliminary study with 12 participants (P10-P21, 9 males and 3 females) in a controlled
environment focusing on snack detection. The goal of this study was to demonstrate and evaluate
a specific use case of EatingTrak - detecting snacks during various activities. Therefore, we limited
the types of food and designed the procedure of activities. An Apple Watch Series 4 3 was used as
the data collect device via an sensor logging app (Sensor Log4). The same chest-mounted GoPro
was used to capture ground-truth.

During the study, each participant was asked to perform a series of activities in the order of their
choice, including walking up/down the stairs in the building, using smartphones for 1 to 2 minutes,
typing on a laptop, cleaning up the table, and talking to the researcher. We placed a bag of chips on
the table and told them that they were welcomed to eat snacks if they wanted to. In other words,
the participants decided if, when, how (e.g., hold the bag in their hands or place the bag on the
table, or take the snack with them while walking), and how much to eat the chips. Among all the
participants, only one did not eat any chips. In total, we collected 218.7 minutes (3.6 hours) data
with 283 snack intakes. Each session lasted 18.2 minutes (12.9-30.0min, std=5.1min).. The average
sampling rate of the sensor was 49.9Hz.
We merged consecutive frame-level predictions and used the seconds-level metric. Results

showed that EatingTrak achieved an average detection precision, recall, and F-1 score of 72.1%,

3https://www.apple.com/watch/
4https://apps.apple.com/us/app/sensorlog/id388014573
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93.7% and 81.5%, respectively. F-1 score across different participants ranges from 55.6% to 97.0%
(SD=14.7%). We conducted a similar ablation study, confirming that F1 score with arm posture
(81.5%) was significantly better than without (63.0%, ANOVA: F(1, 20) = 6.96, p = 0.016). Specifically,
the high recall shows that the system is sensitive to short eating activities as eating chips, indicating
the feasibility of detecting short period eating activities using EatingTrak. This study provides a
glimpse into a practical use case of our system. However, this result is preliminary given the size
and setting of the study, further study is needed to draw a conclusive conclusion.

5.8 Exploring the feasibility of food/utensil recognition in a preliminary experiment
Eating moment detection is a critical first step towards automatic food journaling systems. One step
further, food and utensil types also contain very important information. Although some other work
has obtained decent performance for this task. They usually require multi-modal sensors worn
on several locations [32]. In order to explore the feasibility of recognizing food/utensil types with
EatingTrak, we conducted an additional and preliminary experiment in a controlled lab setting to
collect eating behavior data using different utensils. 12 Participants (P10-P21, same from the snack
study) were asked to eat 7 types of food under 4 utensil types as specified in Table 5. The same
Apple Watch and data logging app in the snack study were used. Each participant completed 6
identical sessions arranged on 2 different days. In each session, they were asked to have 10 intakes
for each food type. The participant could choose the order in which they ate the different types
of food. A front-facing camera (GoPro) was used to capture the ground truth. In this experiment,
709.3 minutes (11.8h) of data were collected with average sampling rate of 49.9Hz.

Utensil Spoon Fork Hand Cup

Food Cereal Salad Raisins WaterYogurt Apples Chips
Table 5. Food and utensil types for the classification experiment

We first used the same seconds-level eating moment detection metric as used in the semi-
wild experiment. Results show that F-1 score was 96.8% and 96.0% and consistent across different
participants (SD=1.77% and 2.53%) using UD and UI setups, respectively. We then calculate the
classification accuracy of 7 food types and 4 utensil types, defined as the percent of intakes correctly
classified among those successfully detected. Results show that EatingTrak obtained 67.1% and
86.5% in classifying 7 food and 4 utensil types in the UD setting. In UI setting, the classification
accuracy was 56.8% and 78.9%.

The confusionmatrices of food and utensil type classification in UD settings are shown in Figure 6.
In food type classification, the most common confusions were between salad and apples, raisins
and chips, and cereal and yogurt, which were all food with the same utensil. Classification accuracy
rose significantly when food types with the same utensil were combined in utensil classification.
This confirms our assumption that there exists different patterns in using different utensils. It also
shows that distinguishing food with the same utensil is more difficult than with different utensils.
Furthermore, the discrepancy of classification performance on distinguishing food and utensil
types between UI and UD setting were not surprising, because different users have different ways
of using utensils, for example, how they hold the utensil and the speed of each of their intake.
Although the results are encouraging, we believe it is still extremely challenging to detect the

food or utensil types in the wild. Because the user’s eating behaviors (eating speed, frequency, hand
gesture) vary significantly in the free-living condition. What we present in this study is preliminary.
A much thorough study and experiment needs to be done to draw further conclusion.
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(a) Food classification (b) utensil classification

Fig. 6. Confusionmatrix for food and utensil type classification in a controlled scenario. Experiment conducted
under the UD setting.

6 DISCUSSION
In this section, we discuss the challenges and opportunities of deploying EatingTrak on commodity
wearable devices in the real-world settings.

6.1 Applications
To our knowlwdge, EatingTrak has provided the best performance (three seconds) in terms of
the time-resolution on detecting eating moments using a wrist-mounted IMU (e.g., smartwatch,
wristbands). The high time resolution on detecting eating moments can potentially improve eating
activity journaling experience and enable new applications. For instance, it can potentially allow
in-situ eating behavior intervention. EatingTrak, if integrated into a smartwatch-based eating
journaling app, can potentially remind the user shortly after the eating activity is detected. Al-
ternately, EatingTrak can be used to ask the users to provide detailed information of an eating
episode shortly after the meal is over. Moreover, the system can be adjusted to be more specific
(with less false alarms) or more sensitive (with less missed alarms) to cater to user’s preferences
and needs. EatingTrak can also be used to analyse users’ eating styles and help users develop a
healthier eating habit. Our high time-resolution detection makes eating frequency measurement
possible, which is found to be positively associated with overweight/obesity [34].

6.2 Balancing precision and recall
Precision and recall represent how many FP (false alarm) and FN (missed alarm) errors the system
may encounter. Depending on the applications, the two type of errors carry different consequences
in real-world applications. For instance, in just-in-time interventions, if the user does not wish to
be disturbed too frequently, reducing FP (higher precision) is more important. In food journaling,
if EatingTrak is used to activate other sensors like cameras, then a higher sensitivity (less FN,
higher recall) is preferred. While generating seconds-level predictions, a threshold 𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is
used to determine when a window is considered a positive or negative prediction as specified in
Section 5.2.2. By adjusting 𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , EatingTrak can be adjusted between higher precision and
higher recall, as demonstrated in Figure 7(b).
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Fig. 7. Relationship between precision and recall. Experiments conducted on the free-living dataset under the
UI setting. Adjusting the threshold 𝑛𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 can make EatingTrak alter between precise (higher precision)
and sensitive (higher recall).

6.3 Challenges of eating/drinking detection with wrist-mounted IMU
EatingTrak has demonstrated promising performance in eating/drinking detection with a single
wrist-mounted IMU, both in eating/drinking moment detection in semi-wild environment and
in food/utensil/snack detection in a more constrained environment. However, we would like to
acknowledge that there still remains significant challenges in eating/drinking detection with wrist-
mounted IMUs. One of the key challenge is that not all eating/drinking activities involve significant
hand movement. For instance, as pointed out in Section 5.2.2, EatingTrak did not work very well
when participants ate food like burgers/sandwiches with both hands. We have observed that when
the participants raised both their hands, they usually rested the elbow on the table and held the
hands close to the mouth. In such a scenario, participants tend to lean the head forward to reach
the food more than moving the food towards the mouth with the hands. In this way, there was
little arm movement while eating. Therefore, it is difficult for the model to track eating moments if
the eating intake gesture was mostly completed by head movements instead of arm movements.
Drinking using a straw is another example of such a case. To address this issue, one natural next
step we plan to explore is to fuse the movements on the head (e.g., earphone, glass) together with
3D arm postures to further improve the performance.

6.4 Challenges of deploying EatingTrak on commodity wearables
EatingTrak only requires a wrist-mounted IMU sensor as the hardware which is available on all
commodity wristbands or smartwatches. Thus, it has a great potential to make an immediate impact
on eating tracking using commodity wearables. However, there are challenges that need to be
addressed before large scale deployments. First, our system needs IMU to continuously sample at
8 Hz. It is possible to only wake up the sensor when motion is detected using ultra-low-power
accelerometer5 to save battery. Second, the machine learning algorithm is currently deployed at
cloud server. We plan to optimize The ML algorithms so that it can be deployed on phones in the
future.

6.5 Further improvements on 3D arm posture estimation
The 3D arm posture estimation can potentially be improved by adopting the following approaches.
First, the reconstruction depends on the facing direction estimation module. The current facing
direction estimation algorithm does not take into account the correlation of facing direction between
frames and the constraints of human movement. Second, the current reconstruction algorithm
5https://www.bosch-sensortec.com/news/ultra-low-power-accelerometer-bma400.html
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assumes that the torso is mostly upright. However, information about the inclination of the torso
could improve the accuracy of the reconstruction. Third, the algorithm to estimate the arm posture
could benefit from using more temporal information. Currently our temporal model is only used to
detect eating/drinking moments based on estimated arm posture, while the arm posture estimation
did not utilize much temporal information (except a Kalman filter). Time series data processing
model (e.g., Hidden Markov Model) can be adopted to further optimize the classification results. If
collecting large-scale 3D arm posture ground truth data in free-living scenarios is possible, it is
also promising to utilize deep-learning approaches such as time-series regression to estimate 3D
arm postures.

6.6 Limitations and future work
Just like any other research project, EatingTrak also has limitations. One critical limitation of
EatingTrak is that it requires users to wear the device on their dominant hand. This means that
EatingTrak will not work for people who are not willing to wear a smart wristband or smartwatch
on their dominant hand. However, we are interested in investigating whether users are willing
to change the wrist for wearing the smartwatch if the device can track their eating activities. We
think the people with strong motivation of journaling eating activities may benefit more from
our technology. Second, each session in in-the-wild study only lasted for two hours, where the
participant was expected to eat. This is limited by the battery life of the GoPro, which is critical for
a fine-grained ground truth annotation. However, it is unclear that how the system would perform
if the data collection session is significantly longer. For instance, if the user wear the device to
conduct activities involving heavy arm movements (e.g., basketball, tennis), it is unclear how would
the system perform. We leave this issue for future exploration.

7 CONCLUSION
In this paper, we present EatingTrak, a AI-powered sensing system, which can detect eating
moments using a wrist-mounted IMU. It can detect eating moments as short as three seconds, by
deep learning the estimated 3D arm postures from the IMU data. EatingTrak was able to identify
eating activities from 113 hours of data collected in a near-free-living semi-wild setup, with a F1
score of 73.7% and 83.8% when the time resolution is 3 seconds and 15 minutes, respectively. It has
significantly improve the time-resolution of identifying eating moments in the wild to three seconds.
Because it does not require any additional hardware on wrist-mounted commodity wearables, it
has the potential to be immediately deployed on millions of commodity smartwatches in the near
future.
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