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Abstract. Self-Supervised Contrastive Learning has proven effective in
deriving high-quality representations from unlabeled data. However, a
major challenge that hinders both unimodal and multimodal contrastive
learning is feature suppression, a phenomenon where the trained model
captures only a limited portion of the information from the input data
while overlooking other potentially valuable content. This issue often
leads to indistinguishable representations for visually similar but seman-
tically different inputs, adversely affecting downstream task performance,
particularly those requiring rigorous semantic comprehension. To address
this challenge, we propose a novel model-agnostic Multistage Contrastive
Learning (MCL) framework. Unlike standard contrastive learning which
inherently captures one single biased feature distribution, MCL progres-
sively learns previously unlearned features through feature-aware negative
sampling at each stage, where the negative samples of an anchor are
exclusively selected from the cluster it was assigned to in preceding stages.
Meanwhile, MCL preserves the previously well-learned features by cross-
stage representation integration, integrating features across all stages to
form final representations. Our comprehensive evaluation demonstrates
MCL’s effectiveness and superiority across both unimodal and multi-
modal contrastive learning, spanning a range of model architectures from
ResNet to Vision Transformers (ViT). Remarkably, in tasks where the
original CLIP model has shown limitations, MCL dramatically enhances
performance, with improvements up to threefold on specific attributes
in the recently proposed MMVP benchmark. Codes are available at
https://github.com/MajorDavidZhang/MCL.git.

Keywords: Self-Supervised Learning · Contrastive Learning · Feature
Suppression

1 Introduction

Self-Supervised contrastive learning obtains high-quality representations by max-
imizing the similarity between an anchor and its associated positive samples,
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(a) Images from Trifeature with different
shapes and textures have high similarity in
the SimCLR space.

CLIP SpaceSimilarity=0.933

a rabbit facing righta rabbit
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(b) Images from MMVP with different orien-
tations and directions have high similarity in
the CLIP space.

Fig. 1: Demonstration of feature suppression in both unimodal (SimCLR) and multi-
modal (CLIP) settings. The green arrows refer to correct linear evaluation classification/
pairing; the red arrows refer to incorrect ones.

while concurrently increasing the separation among the dissimilar data sam-
ples in the embedding space [23]. Various contrastive learning models serve as
fundamental pretrained backbones across different fields [6, 19,37,50]. However,
recent studies [40, 45, 53] have shown that representations derived from standard
contrastive learning often miss substantial portions of input information. This
phenomenon is referred to as feature suppression. Such suppression can severely
compromise the effectiveness of models in various downstream tasks, ranging
from classification [40] to pattern recognition [47]. In addition, the feature sup-
pression issues are also observed in multimodal contrastive learning [3,47], such as
CLIP [37], which is predominantly adopted in current multimodal large language
models(MLLMs) [32,54,58] as the vision encoder. Feature suppression in CLIP
significantly impedes the capability of MLLMs to differentiate between images
with varying semantics, resulting in severe hallucination problems [29–31, 47]
within these models.

Referencing Fig. 1a, SimCLR trained on the Trifeature dataset fails to differ-
entiate between a circle and a pentagon with the same shape and color. Similarly,
the OpenAI pretrained CLIP model struggles to distinguish between a rabbit
facing left and a rabbit facing right due to the high similarity of their representa-
tions in the embedding space, as illustrated in Fig. 1b. Consequently, MLLMs
that utilize CLIP as their vision encoder experience systematic failures on tasks
involving such distinctions. While feature suppression presents a critical challenge
in contrastive learning, there are only a handful of methods proposed to address
it. These approaches often come at the expense of compromising previously
well-learned features [40,45]. Alternatively, they necessitate an additional recon-
struction loss [3], which is rendered impractical for large-scale applications such
as CLIP due to the high computational demands. Furthermore, the scope of
these existing methodologies is often restricted to either unimodal or multimodal
contrastive learning, lacking universal applicability.
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In this paper, we propose a novel model-agnostic framework: Multistage Con-
trastive Learning (MCL), designed to effectively tackle feature suppression in both
unimodal and multimodal settings. Unlike standard single-stage contrastive
learning that often collapses to certain features, MCL aims to progressively learn
new features that have not been explored in the previous training stages, while
retaining the well-learned features. Throughout the multistage training process,
we implement a feature-aware negative sampling strategy designed to compel
the model towards exploring unlearned features in earlier stages. Inspired by the
observation that representations in contrastive learning tend to cluster according
to the learned features [37,40], at each stage, MCL selects negative samples for
each anchor exclusively from the cluster it was assigned to in preceding stages.
Because samples within the same cluster share similar learned features, these
features cannot be reused to accomplish the contrastive learning objective: to
discriminate the anchor from negative samples. Therefore, the model is neces-
sitated to discover and incorporate previously unlearned features to fulfill the
contrastive learning objective. After the multistage learning process, cross-stage
representation integration is employed. Here the representations of data samples
from all stages are concatenated to form the ultimate representations, ensuring
that the well-learned features are retained.

In summary, the contributions of this work are three-fold. First, we propose
a novel model-agnostic contrastive learning framework: Multistage Contrastive
Learning that mitigates the severe issues of feature suppression commonly encoun-
tered in contrastive learning. Second, to the best of our knowledge, this is the first
work to discuss and address the problem of feature suppression in both unimodal
and multimodal contrastive learning. Third, we empirically demonstrate that
the proposed MCL can be adapted to various contrastive learning settings and
further boost their performance using different encoder backbones scaling from
ResNet-18 to ViT-L-14. Notably, MCL demonstrates a significant improvement
and boosts the average accuracy from 20.0 to 32.6 in the CLIP setting on the
MMVP benchmark.

2 Related Works

2.1 Contrastive Learning

How to extract useful information from unlabeled data is an important question
in machine learning [2]. Among all branches of methods, contrastive learning
flourishes in recent years [23] and plays an important role in text-to-image
generation [37–39] and multimodal large language models [32,54,58]. Contrastive
learning aims to learn useful representations from unlabeled data by maximizing
the agreement between different views of the data [14]. Recently, different variants
of contrastive learning methods have been proposed [4, 6, 19, 36]. CPC [36]
learns representations by predicting future samples in a sequence using an auto-
regressive model with a contrastive loss. MoCo [19] is designed to overcome
the limitations of batch size in contrastive learning by introducing a dynamic
dictionary with a queue and a moving-averaged encoder. SimCLR [6] is a simple
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yet effective framework for contrastive learning of visual representations. SimCLR
demonstrated that, with sufficiently large batch sizes, it is possible to learn
powerful representations without needing specialized architectures or a memory
bank. MoCo-v2 [9] builds upon the original MoCo by incorporating several
improvements from SimCLR. Negative-free contrastive learning [10,17] further
simplifies contrastive learning by removing the requirement of explicit negative
samples. Although contrastive learning achieves promising performance in many
fields [26,27,44,48, 50,55], it cannot guarantee all semantically relevant features
are learned when multiple features exist [3, 7, 47,52,53].

2.2 Feature Suppression in Contrastive Learning

The feature suppression phenomenon has been first empirically observed by Chen
et al . [7]. Subsequently, Robinson et al . [40] formally brings up this problem as
feature suppression, and shows that simply minimizing the InfoNCE loss cannot
avoid feature suppression. Both Robinson et al . [40] and Kukleva et al . [25]
observed that the temperature parameter affects the trade-off of which features
are learned and which features are suppressed. Xiao et al . [52] have discovered
that certain augmentations used to generate positive samples might destroy
the feature information, hence hindering the learning process of corresponding
features. Assran et al . [1] point out that feature suppression might be caused
by the hidden prior distribution bias in contrastive learning. Xue et al . [53]
demonstrate that the simplicity bias of stochastic gradient descent is one of the
factors. Not only in the above unimodal setting, Bleeker et al . [3] first studies
this problem in the multimodal setting. Tong et al . [47] have observed that
images with different semantics have unreasonably high similarities in CLIP [37]
embedding space, which is also highly related to feature suppression in multimodal
contrastive learning.

Few methods specifically address the challenge of feature suppression in con-
trastive learning. Robinson et al . [40] proposed a technique aimed at eliminating
whichever features distinguish the positive sample from negative samples in the
embedding space. Similarly, Tamkin et al . [45] applied a comparable strategy
but targeted the input space. Both approaches are based on adversarial training,
which does not ensure the preservation of previously well-learned features. In
contrast, our approach diverges by sequentially learning new features stage by
stage without compromising the integrity of already learned features. Bleeker
et al . [3] mitigate the feature suppression problem by introducing an additional
reconstruction loss, which is not feasible for large-scale settings such as CLIP
due to the high computational cost. In contrast, our approach does not necessi-
tate modifications to the original loss function or alterations to the base model,
conserving computational resources and ensuring compatibility across different
models. It is worth noting that, unlike the aforementioned methods and several
other related approaches [8, 12, 16, 35, 43] that are confined to either unimodal
or multimodal settings, our work stands as the first attempt to tackle feature
suppression across both unimodal and multimodal contrastive learning.
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3 Preliminaries

3.1 Self-Supervised Contrastive Learning

In contrastive learning, the core objective is to minimize the distance between
positive pairs while maximizing the distance between negative pairs within the
representation space. This objective compels the model to effectively distinguish
positive pairs from their negative counterparts. Without loss of generality, here
we consider the basic yet effective Noise Contrastive Estimation (NCE) [18] based
contrastive learning model [33] as our backbone contrastive learning model. Given
an anchor x, its positive sample x+ and m negative samples {x−

i }mi=1, the model
required to minimize the InfoNCE loss defined below:

L = Ex,x+,{x−
i }m

i=1

[
− log

es(z,z
+)/τ

es(z,z+)/τ +
∑m

i=1 e
s(z,z−

i )/τ

]
, (1)

where s(·, ·) denotes the cosine similarity, τ represents the temperature, and z,
z+, and z− are the corresponding embeddings of x, x+, and x−. In unimodal
contrastive learning, typically the positive samples are augmentations of the
anchor, while in multimodal contrastive learning, the positive samples are usually
data pairs with similar semantics as the anchor. The negative samples are
randomly sampled data.

Table 1: Demonstration of feature suppression in unimodal and multimodal settings.

(a) Linear evaluation results of SimCLR and MoCo-
v2 trained on Trifeature and CIFAR-MNIST (C-
M). The feature suppression problem in SimCLR is
severe. In Trifeature, SimCLR significantly ignores
the shape information, and in CIFAR-MNIST, it
almost completely neglects the CIFAR information.
With MoCo-v2, the issue of feature suppression
is less pronounced but still exists, considering the
two datasets are very simple.

Feature SimCLR MoCo-v2

C-M(CIFAR) 0.10 0.77
C-M(MNIST) 0.99 0.98
Trifeature(Shape) 0.44 0.85
Trifeature(Texture) 0.92 0.99
Trifeature(Color) 1.00 1.00

(b) Performance of CLIP on the MMVP bench-
mark. The performance is low on most of the
attributes. O&D: Orientation and Direction,
PSF: Presence of Specific Features, S&C: State
and Condition, Q&C: Quantity and Count,
P&R: Positional and Relational Context, C&A:
Color and Appearance, S&P: Structural and
Physical Characteristics, Texts: Texts, V&P:
Viewpoint and Perspective.

Attribute Accuracy Attribute Accuracy

O&D 26.7 C&A 40.0
PSF 13.3 S&P 26.7
S&C 26.7 Texts 13.3
Q&C 6.7 V&P 20.0
P&R 6.7 Average 20.0

3.2 Feature Suppression

This section empirically illustrates the feature suppression phenomenon across
both unimodal and multimodal contrastive learning settings.
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In the unimodal setting, the ability of the encoder to capture specific feature
information can be assessed through the linear evaluation accuracy of discriminat-
ing that feature. A high linear evaluation accuracy for a given feature suggests the
encoder has successfully captured substantial information regarding that feature,
and vice versa. We train ResNet-18 encoders using SimCLR [6] and MoCo-v2 [9]
on two datasets (CIFAR-MNIST and Trifeature)1 following Robinson et al . [40]
and Chen et al . [7], to demonstrate the feature suppression phenomenon. The
linear evaluation results for each feature across both datasets are shown in Tab. 1a.
In CIFAR-MNIST, the linear evaluation accuracy for MNIST features is high
but both SimCLR and MoCo-v2 show comparatively lower accuracy for CIFAR
features. This discrepancy indicates MNIST features’ predominance, with CIFAR
information being notably overlooked—SimCLR, in particular, demonstrates
this trend more pronouncedly. In Trifeature, a similar pattern emerges: both
contrastive learning methods achieve high linear evaluation accuracy for texture
and color, yet falter when it comes to shape. This divergence suggests that the
encoders while the encoders sufficiently capture texture and color, they neglect
shape information. Consequently, as illustrated in Fig. 1a, images with different
shapes in Trifeature have high similarity in the SimCLR embedding space. This
overlap significantly hampers the model’s capacity to discern shapes, adversely
affecting performance on downstream tasks reliant on shape differentiation.

Similarly, in the multimodal setting, our observations align with those as
reported by Tong et al . [47]. Referencing Fig. 1b, we find that images, despite
varying significantly in object orientation and direction, are represented with
striking similarity in the CLIP embedding space. As a result, CLIP struggles to
discern differences in object orientation and direction. This limitation can lead
to orientation-based hallucinations in multimodal large language models that
utilize CLIP as their vision encoder [47]. To evaluate this phenomenon, Tong
et al . [47] introduce the MMVP benchmark. We evaluate the OpenAI ViT-L-14
CLIP model [37] with 2242 resolution on the MMVP benchmark. The results,
presented in Tab. 1b, show limited performance across a range of attributes,
highlighting a severe feature suppression issue of the current CLIP model.

4 Multistage Contrastive Learning

4.1 Feature-aware Negative Sampling

In the initial phase of MCL, we train an encoder f0 using the standard NCE
objective as in Eq.1. For clarity, we specify that the subscript’s first component
refers to the sample index, while the latter signifies the stage index. Considering
a dataset with M samples X = {xi}Mi=1, after training we obtain the dataset’s
encoded representations Z0 = {f0(xi)}Mi=1. Subsequently, we apply K-means
clustering to Z0 and obtain the initial cluster assignments Y 0 = {y(i,0)}Mi=1. The
MCL training process consists of N stages. At jth stage, for a given sample xi,

1 More detailed dataset description and settings can be found in Sec. 5.
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Fig. 2: Overview of the Multistage Contrastive Learning (MCL) Framework: Initially,
the model is trained and its output representations are clustered. At each subsequent
stage, cluster assignments from the previous stages are concatenated to derive a pseudo
label. Throughout the training phase, negative samples are selected based on their
matching pseudo label with the anchor. The final representations are the concatenation
of representations in each stage. For simplicity, only three stages are shown here. The
‘color’, ‘shape’, and ‘texture’ here are used metaphorically to represent abstract features.

we define its pseudo label ŷ(i,j) as the concatenation of its cluster assignments
from all preceding stages, as follows:

ŷ(i,j) = [y(i,0), · · · ,y(i,j−1)]. (2)

When feature suppression happens, representations will be clustered by domi-
nant features, since inputs with the same dominant features exhibit high similarity
in representation space [40,47]. Therefore, data samples with identical pseudo
labels indicate they have similar dominant features learned in prior stages, as
illustrated in Fig. 2. During the jth stage, the encoder fj is trained under a
refined InfoNCE objective incorporating feature-aware negative sampling: the
negative samples must have identical pseudo labels with the anchor. Formally,
we define the optimization objective for fj at jth stage as:

L = Ex,x+,{x−
i }m

i=1

− log
es(z,z

+)/τ

es(z,z+)/τ +
∑m

i=1 1ŷj=ŷ−
(i,j)

es(z,z
−
i )/τ

 , (3)

where ŷj = [y0, · · · ,yj−1] represents the pseudo label of the anchor x at jth stage;
ŷ−
(i,j) = [y−

(i,0), · · · ,y
−
(i,j−1)] denotes the pseudo label of the negative sample x−

i at
jth stage; and 1ŷj=ŷ−

(i,j)
∈ {0, 1} corresponds to an indicator function evaluating

to 1 if and only if ŷj = ŷ−
(i,j). Feature-aware negative sampling ensures that the

previously dominant features can not be re-utilized by the model to optimize the
InfoNCE loss since the anchor and its negative samples share similar dominant
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features learned in earlier stages. As such, the model has to identify and utilize
features distinct from those previously dominant features. For example, if an
encoder f initially learns color as a dominant feature in Trifeature, through
feature-aware negative sampling, the subsequent encoder f ′ will be tasked with
differentiating samples with the same color. This forces the contrastive model to
explore alternative features such as texture or shape, rather than relying solely
on color, as depicted in Fig. 2. Following the training of the jth stage, we obtain
the representations Zj = {fj(xi)}Mi=1 encoded by fj , and the cluster assignments
Y j = {y(i,j)}Mi=1 for the feature-aware negative sampling in the next stage.

Notice that derived from Eq. 2, N stages of clustering with K clusters each
lead to a potential total of KN unique clusters. To ensure a meaningful clustering
where clusters are approximately balanced and contain a sufficient number of
samples, there’s a mathematical constraint on the values of N and K:

KN ≤ M

b
, (4)

where M represents the total number of samples in the training dataset, and
b denotes the batch size. This constraint guarantees that the resulting clusters
each have a sufficient number of samples to form a batch, avoiding situations
where a cluster contains fewer samples than the batch size, which would make it
impractical for training purposes.

4.2 Cross-stage Representation Integration

Upon completing the training across all stages, we employ cross-stage represen-
tation integration to derive the final representation, which aims to preserve the
information of well-learned features from each stage. Specifically, we element-
wise concatenate the representations encoded by each trained encoder, resulting
in comprehensive final representations for downstream tasks. The cross-stage
representation integration is defined as:

Z = {[f0(xi), · · · , fN−1(xi)]}Mi=1. (5)

It is worth noting that more cross-stage representation integration methods can
be further tailored to accommodate different downstream tasks in the future. In
this work, we use a simple concatenation as a preliminary baseline to demonstrate
MCL’s main concept. In addition, since our framework does not change the
backbone model, it can be seamlessly integrated with any NCE-based contrastive
learning method.

5 Experiments

5.1 Datasets

Trifeature. Trifeature [21] is an image dataset, where each image has three
independent features: color, texture and shape each taking 10 values. For each
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combination of the three features there are 100 samples, in which the position
and rotation of the object are random. The three downstream tasks are to classify
the color (C = 10 classes), texture (C = 10 classes), and shape (C = 10 classes).
CIFAR-MNIST (C-M). CIFAR-MNIST consists of channel-wise concatenation
of the CIFAR-10 [24] image and the MNIST [28] image, following Chen et al . [7].
Each image has four channels: three from the CIFAR-10 and one from the MNIST.
As the images are randomly sampled from the two datasets in concatenation,
the CIFAR-10 class and the MNIST class can be considered as two independent
features. The two downstream tasks are to predict the CIFAR-10 class (C = 10
classes) and the MNIST class (C = 10 classes).
CelebA. CelebFaces Attributes Dataset (CelebA) [34] is a large-scale face at-
tributes dataset, where each image has 40 attribute annotations. We take three
attributes: black hair, male, and smiling. We resampled the dataset to make these
three attributes independent of each other, which can be considered as three
independent features. After resampling the dataset has more than 40k images
in total. The three downstream tasks are to predict whether the celebrity has
black hair (C = 2 classes), whether the celebrity is smiling (C = 2 classes), and
whether the celebrity is male (C = 2 classes).

5.2 Baselines

IFM. Implicit Feature Modification (IFM) [40] aims to mitigate feature suppres-
sion by adaptive modifying samples to remove whichever features are used to
discriminate a particular positive pair from negatives in feature space.
FD. Feature Dropout (FD) [45] mitigates feature suppression by adversarial
perturbation on input space to break the features already used to discriminate a
particular positive pair from negatives, forcing the model to learn new features.
TS. Temperature Schedules (TS) [25] aims to improve the contrastive learn-
ing performance on long-tail data by dynamically scheduling the temperature
parameter along the training process. We consider it as a baseline here since
temperature has a strong impact on which features are learned.

5.3 Evaluation

Linear Evaluation Protocol. The well-accepted linear evaluation protocol [6] is
used to evaluate the quality of learned representations in the unimodal contrastive
learning setting. Specifically, after the contrastive training process, the trained
encoder is fixed and the projection head is discarded. A linear softmax classifier is
trained on top of the trained encoder for each label. If the classification accuracy
on the label related to one feature is high, it means the encoder encodes sufficient
information about that feature, and vice versa.
MMVP. The Multimodal Visual Patterns (MMVP) benchmark [47] is used for
the multimodal contrastive learning setting. It challenges the CLIP [37] model
to accurately match images with the corresponding text statements (e.g ., “a
rabbit facing left” and “a rabbit facing right”) using the image-text similarity
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computed on learned representations and evaluates the pairing accuracy. Sourced
from ImageNet [41] and LAION-Aesthetics [42], the MMVP dataset comprises
image pairs that exhibit high similarity in the CLIP embedding space but possess
distinctly different semantic features in nine attributes (e.g ., orientation and
direction, color and appearance). Lower performance on the MMVP benchmark
indicates a more severe issue of feature suppression.

5.4 Mitigating Feature Suppression in the Unimodal Setting

First, we compare our proposed MCL with IFM, TS, FD, and vanilla SimCLR
on Trifeature, CelebA, and CIFAR-MNIST datasets.
Experiment Setting. We use SimCLR as the backbone contrastive learning
method for MCL and all the baselines. For CIFAR-MNIST, we adapt ResNet-18 to
accommodate smaller input sizes, following the CIFAR-10 configuration described
by He et al . [20]. We choose the best temperature value from {0.1, 0.25, 0.5} for
MCL, IFM, FD, and vanilla SimCLR, and set the temperature schedule range
for TS to [0.1, 1] as its default setting in comparison. For MCL, we train for 3
stages, and 200 epochs in each stage. The number of clusters for K-means is set
to 5. For IFM and FD, we train for 200 epochs. For TS, we train for 600 epochs
since it requires a long training time in adherence to the requirements of the
original setting. We use the default settings for all the baselines and backbone
models unless otherwise specified.
Experimental Results. As shown in Tab. 2, MCL achieves non-trivial improve-
ments compared with the baselines in almost all the tasks. The performance
gain is especially prominent in CIFAR-MNIST and Trifeature, where the feature
suppression is severe. In CIFAR-MNIST, the CIFAR feature is entirely dominated
by the MNIST feature. Whereas, with our MCL framework, the linear evaluation
accuracy of the MNIST is largely improved. Meanwhile, the already well-learned
features in vanilla SimCLR are maintained in MCL in all the settings, which
indicates MCL can learn the previously ignored features without forgetting the
already well-learned features. Though the baselines may show improvements
on certain tasks, they experience performance declines on others, leading to an
overall performance that is inferior to the vanilla SimCLR. To illustrate MCL’s
ability to prioritize different key features across stages, we present the three
samples most similar to the anchor for each stage. The common characteristics
of these top 3 samples highlight the model’s shifting focus throughout the learn-
ing process. For example, the similarity in shape between the anchor and the
top 3 samples in Stage 2 indicates the model’s concentration on shape at this
stage. From Fig. 3, we can observe the model evolves through stages, with a
prioritization on color in Stage 0, texture in Stage 1, and shape in Stage 2.

Unlike CIFAR-MNIST and Trifeature, STL-10 [13] does not have explicitly
identified semantic features. We incorporate MCL with both SimCLR and MoCo-
v2 [9], use ResNet-50 [20] as the encoder, train on STL-10 dataset for 3 stages, 400
epochs for each stage. The results are shown in Fig. 4. MCL boosts the MoCo-v2
performance on STL-10 by more than two percent. This further validates the
effectiveness of our proposed MCL framework.
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Table 2: Linear evaluation accuracy of MCL and the baselines. Bold indicates the best
performance.

Trifeature CelebA CIFAR-MNIST

Shape Texture Color Hair Smiling Gender CIFAR MNIST Average

IFM 0.99 0.99 1.00 0.82 0.70 0.93 0.11 0.99 0.82
TS 0.93 1.00 1.00 0.62 0.65 0.87 0.09 0.99 0.77
FD 0.75 0.73 0.78 0.81 0.89 0.94 0.78 0.86 0.82
SimCLR 0.81 0.99 1.00 0.84 0.75 0.94 0.29 0.98 0.83
MCL 1.00 1.00 1.00 0.85 0.79 0.95 0.87 0.99 0.93

ST
AG

E0
ST
AG

E1
ST
AG

E2

Anchor Top1 Top2 Top3

Fig. 3: In each stage, the top 3 most similar sam-
ples to the anchor, which demonstrates the model’s
shifting focus from color, texture, to shape across
different stages of MCL.
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Fig. 4: Linear evaluation accu-
racy on STL-10 dataset by in-
corporating MCL with SimCLR
and MoCo-v2.

5.5 Mitigating Feature Suppression in the Multimodal Setting

Experiment Setting. In this setting, we mainly adopt CLIP [37] to learn image
representations on image-text pair datasets using contrastive learning. Specifically,
we train two CLIP models in the MCL framework with different scales: one uses
ResNet-50 as the image encoder, while the other utilizes ViT-L-14 [37]. Since
the CLIP model requires training on hundreds of GPUs for a few days, instead
of training from scratch, we tune the original CLIP model on Conceptual 12M
(CC12M) [5], a large image-text pair dataset specifically designed for vision-
and-language pre-training. We use the original OpenAI pre-trained weightset
al . [37] as the initialization for each stage. Our implementation is based on
OpenCLIP [11]. Since we mainly focus on image representation, we fix the text
encoder in contrast to the approach in Zhai et al . [56]. Considering the features
of the last few blocks in CLIP are more dominant [15] and avoid overfitting, we
only leave the last 6 blocks trainable, with the other part of the image encoder
fixed. For both two versions, we tune the models on CC12M for additional 3
stages, 10 epochs in each stage for the ResNet version, and 20 epochs for the ViT
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Table 3: Accuracy of the MCL tuned CLIP models on the MMVP benchmark. Bold
indicates the best performance across four stages. The STAGE0 model is the original
OpenAI pre-trained model. The final MCL model result is obtained by using the
concatenation of the representations across all four stages as the final representation.

O&D PSF S&C Q&C P&R C&A S&P Texts V&P Average

ResNet STAGE0 6.7 6.7 46.7 0.0 13.3 46.7 33.3 6.7 13.3 19.3
ResNet STAGE1 13.3 13.3 40.0 20.0 0.0 33.3 33.3 6.7 26.7 20.7
ResNet STAGE2 6.7 6.7 33.3 6.7 6.7 73.3 13.3 13.3 33.3 21.5
ResNet STAGE3 0.0 13.3 33.3 20.0 0.0 60.0 33.3 26.7 20.0 23.0
ResNet MCL 0.0 13.3 40.0 6.67 6.67 73.3 40.0 6.7 33.3 24.4

ViT STAGE0 26.7 13.3 26.7 6.7 6.7 40.0 26.7 13.3 20.0 20.0
ViT STAGE1 13.3 33.3 66.7 26.7 13.3 53.3 20.0 13.3 26.7 29.6
ViT STAGE2 0.0 13.3 46.7 40.0 6.7 53.3 20.0 13.3 20.0 23.7
ViT STAGE3 13.3 6.67 46.7 13.3 13.3 66.7 40.0 13.3 20.0 25.9
ViT MCL 6.67 20.0 73.3 13.3 13.3 80.0 46.7 13.3 26.7 32.6

version. We do K-means clustering on the image representation between each
stage, and the number of clusters is set to 10. We use a batch size of 8192 and
a warmup of 10% of the total steps. It is worth noting that although multiple
stages are trained in our framework, the computation parameters will not increase
much. For example, the total number of parameters in our four-stage ViT CLIP
image encoder will only increase by 75% compared to a single vanilla CLIP.
The parameters can be further reduced by training fewer layers or introducing
parameter-efficient tuning, such as LoRA [22]. We leave this as future work.
Experimental Results. Table 3 presents the performance of the tuned CLIP
models across different stages. For both the ResNet and ViT architectures, we
observe improvements in later stages over earlier ones on tasks where initial
performances were suboptimal. For example, ViT at Stage 1 outperforms its
Stage 0 counterpart in PSF, ViT at Stage 2 exceeds the performance of both
Stage 0 and Stage 1 in Q&C, and ViT at Stage 3 surpasses the earlier stages
in C&A. These improvements underscore the models’ evolving expertise in
distinct features, enhancing their competence with specific attributes. Notice
that each stage of the ViT model specializes in different attributes: ViT-STAGE0
in O&D, ViT-STAGE1 in PSF, S&C, and V&P, ViT-STAGE2 in Q&C, and
ViT-STAGE3 in C&A and S&P.

Upon integrating representations from all stages, the ensemble model’s average
performance on the MMVP benchmark increases from 19.3 to 24.4 for the ResNet
version, and from 20.0 to 32.6 for the ViT version. Notably, the final MCL model
surpasses the peak performance seen in individual stages in certain attributes
(e.g ., S&C and C&A for ViT), suggesting that it captures complementary
features across stages. Interestingly, in certain attributes (e.g ., O&D), the MCL
model does not achieve the best results compared to individual stages, suggesting
room for improvement in our approach of cross-stage representation integration.
This finding directs future research toward optimizing the process of combining
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stage-specific insights, aiming to harness the full potential of the model’s learned
features.

5.6 Discussion

In this section, we study the impact of training stage (N), number of clusters (K)
in K-means, and temperature τ in our MCL framework. Unless noted otherwise,
the experimental configurations adhere to those outlined in Sec. 5.4.
Learning Dynamics Across Stages. We explore the learning dynamics by
increasing the number of training stages from one to seven. Given the constraint
in Eq. (4), a larger number of stages (N) requires a smaller number of clusters
(K). Therefore, we set K = 2 and the temperature τ = 0.25. Initially, we assess
the performance of the encoder at each stage independently, without cross-stage
representation integration. As depicted in Fig. 5a, up to Stage 4, CIFAR features
remain predominantly suppressed by MNIST features. Interestingly, at Stage 5,
the model abruptly shifts to prioritize CIFAR features over MNIST, resulting in
a sudden change rather than a gradual improvement in linear evaluation accuracy.
Subsequently, we analyze the performance with cross-stage representation inte-
gration across N stages, illustrated in Fig. 5b. This process effectively preserves
the initially learned MNIST features. Without cross-stage integration, there is a
noticeable drop in MNIST feature performance from Stage 4 to 5. However, with
integration, the performance on MNIST remains stable. From Stage 5 onwards,
the model exhibits minimal performance variation indicating convergence.
Impact of Number of Clusters. We investigate how the number of clusters
K in k-means clustering affects the learning process within the MCL framework.
We train SimCLR in the MCL framework on CIFAR-MNIST for three stages,
varying K among {2, 5, 10} respectively and assess the linear evaluation accuracy
on CIFAR after cross-stage representation integration of N = {0, 1, 2} stages,
given CIFAR features were notably suppressed in the vanilla SimCLR (STAGE0).
The findings, depicted in Fig. 6, indicate that a higher K value enables the model
to uncover previously suppressed features more rapidly, reducing the number of
stages needed to achieve substantial performance gains. Conversely, a lower K
value (K = 2) necessitates additional stages for similar outcomes, as evidenced
in Fig. 5b. Nonetheless, increasing cluster count from 5 to 10 does not markedly
improve performance beyond the third stage, suggesting a performance plateau.
Further increasing K beyond this point does not yield additional benefits.
Robustness to Diverse Temperature Settings. Following [40], which high-
light the pivotal role of temperature (τ) in influencing feature suppression within
contrastive learning frameworks, we evaluate MCL’s adaptability across varying
temperature settings τ = {0.1, 0.25, 0.5}. Results, as detailed in Tab. 4, indicate
that MCL consistently enhances performance across all datasets, irrespective of
the temperature setting employed. Notably, the most significant performance up-
lifts are observed under temperature conditions where the baseline SimCLR model
exhibits pronounced feature suppression, such as τ = {0.1, 0.5} in Trifeature.
This trend underscores MCL’s capability to not only mitigate feature suppression
but also fortify the robustness of SimCLR against temperature variations.
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Fig. 5: Linear evaluation results of MCL on CIFAR-
MNIST for different training stages.
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Table 4: The performance improvements by incorporating MCL with SimCLR under
different temperature settings. Improvements are observed across all datasets, with
more significant gains where feature suppression is more pronounced.

τ = 0.1 τ = 0.25 τ = 0.5

SimCLR MCL SimCLR MCL SimCLR MCL

Trifeature(Shape) 0.66 1.00 (↑.34) 0.81 0.92 (↑.11) 0.44 0.75 (↑.31)
Trifeature(Texture) 0.91 1.00 (↑.09) 0.99 1.00 (↑.01) 0.92 0.99 (↑.07)
Trifeature(Color) 1.00 1.00 (↑.00) 1.00 1.00 (↑.00) 1.00 1.00 (↑.00)

CelebA(Hair) 0.84 0.85 (↑.01) 0.58 0.73 (↑.15) 0.57 0.69 (↑.12)
CelebA(Smiling) 0.75 0.79 (↑.04) 0.63 0.65 (↑.02) 0.63 0.66 (↑.03)
CelebA(Gender) 0.94 0.95 (↑.01) 0.72 0.87 (↑.15) 0.71 0.86 (↑.15)

C-M(CIFAR) 0.29 0.83 (↑.54) 0.10 0.87 (↑.77) 0.10 0.87 (↑.77)
C-M(MNIST) 0.98 0.98 (↑.00) 0.99 0.99 (↑.00) 0.99 0.99 (↑.00)

6 Conclusion

In this paper, we investigated the critical feature suppression in contrastive learn-
ing. Specifically, we introduced the Multistage Contrastive Learning (MCL) frame-
work, a novel, model-agnostic framework. MCL employs a cross-stage negative
sampling strategy that effectively promotes the learning of previously unlearned
information at each stage. Meanwhile, MCL efficiently preserves well-learned fea-
tures and mitigates degradation observed in prior works. The effectiveness of our
approach is demonstrated through comprehensive analyses with commonly used
baseline models on various datasets and settings, highlighting MCL’s effectiveness
and adaptability in both unimodal and multimodal contrastive learning.
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A Appendix

In the appendix, we provide further details and additional experimental results
that complement the main text. The contents include:

Appendix A.1 . Implementation details of feature-aware negative sampling.
Appendix A.2 . Learned features hinder the model from acquiring new features.
Appendix A.3 . Train SimCLR using MCL on ImageNet.
Appendix A.4 . Ensemble CLIP models trained using MCL with Model Soup.
Appendix A.5 . The computational cost of MCL.
Appendix A.6 . Ablation study for the number of trainable blocks when

training ViT CLIP models using MCL.
Appendix A.7 . Analysis of the clustering results across different stages of

MCL.

A.1 Details of Feature-Aware Negative Sampling

The feature-aware negative sampling strategy necessitates that an anchor and
its negative samples belong to the same cluster, as determined in the previous
stages. To effectively organize training samples according to their pseudo labels
obtained between stages, we utilize a custom batch sampler. The implementation
details of the batch sampler are shown in Algorithm 1.

Algorithm 1 Feature-Aware Negative Sampling for MCL

1: Input: Dataset D with pairs of data and pseudo labels {(xi, yi)}Mi=1, number of
unique pseudo labels C = |{yi}Mi=1|

2: Group D into a two-dimensional array G based on pseudo labels y, such that
G[c] = {(xi, yi) ∈ D|yi = c}

3: for batch index j ← 0 to ∞ do
4: Select group index k ← j mod C
5: if all samples in G[k] are traversed then
6: continue
7: end if
8: Create batch from untraversed samples in G[k]
9: if all samples in G are traversed then

10: break
11: end if
12: end for

A.2 Learned Features Hinder the Learning Process

We conduct experiments to demonstrate that the learned features can impede the
model’s ability to acquire new features. Specifically, at each stage, we initialize the
model with parameters from the previous stage instead of training from scratch.
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We train SimCLR with ResNet18 as the encoder on the Trifeature dataset. We
use the τ = 0.5 setting as described in Section 5.6 in the main paper. As shown
in Tab. 5, this model makes almost no progress from Stage 1 to Stage 2, and its
final performance (0.42/0.97/1.00) is markedly inferior to that of our proposed
method (0.75/0.99/1.00). This can be attributed to the design of MCL, which
does not require the retention of previously learned properties at each stage, thus
allowing it to freely learn new features without constraints.

Table 5: Linear evaluation results on shape, texture, and color respectively using naive
inheritance and MCL.

Stage0 Stage1 Stage2

Inheritance 0.44/0.92/1.00 0.40/0.97/1.00 0.42/0.97/1.00
MCL 0.44/0.92/1.00 0.72/0.97/1.00 0.75/0.99/1.00

A.3 Train SimCLR Using MCL on ImageNet

To further validate the effectiveness of MCL on the large unimodal dataset, we
train SimCLR with ResNet34 as the encoder on ImageNet. We use a batch size
of 8192 and train for 100 epochs at each stage for 3 stages. As shown in Tab. 6,
the experiment results demonstrate a notable improvement.

Table 6: Linear evaluation accuracy of incorporating MCL with SimCLR on ImageNet.

Stage0 Stage0+1 Stage0+1+2

MCL 0.456 0.477 0.482

A.4 Ensemble ViT CLIP Models with Model Soup

We conduct experiments to compare MCL fine-tuned models with the standard
OpenAI pretrained model, maintaining identical parameter sizes. Specifically,
we utilize Model Soup [51], an effective and efficient ensemble approach that
averages the weights of multiple fine-tuned models. We applied Model Soup to
ensemble the fine-tuned ViT CLIP models across four stages, as described in
Section 5.4 of the main text. As illustrated in Tab. 7, the MCL Model Soup
achieves an average score of 29.6. Although this represents a slight decrease in
performance compared to the simple concatenation method discussed in our main
text, it still substantially surpasses the baseline average score of 20.0, with the
same parameter size. We also test the MCL Model Soup on text-to-image and
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image-to-text retrieval tasks, following the settings in Zhang et al . [57]. As shown
in Tab. 8, the MCL Model Soup achieves a notable performance improvement
compared to the OpenAI baseline. The results underscore the robustness and
effectiveness of the MCL framework.

Table 7: Comparative analysis of ViT CLIP models fine-tuned with MCL on the
MMVP benchmark. “OpenAI” denotes the baseline performance using the OpenAI
pretrained model. “MCL Concat” represents the performance after applying MCL and
using concatenated representations from all stages. MCL Model Soup (denoted as “MCL
MS”) illustrates the performance of the ensemble model created by Model Soup.

O&D PSF S&C Q&C P&R C&A S&P Texts V&P Average

OpenAI 26.7 13.3 26.7 6.7 6.7 40.0 26.7 13.3 20.0 20.0
MCL Concat 6.7 20.0 73.3 13.3 13.3 80.0 46.7 13.3 26.7 32.6
MCL MS 13.3 26.7 46.7 20.0 6.7 60.0 26.7 33.3 33.3 29.6

Table 8: Performance of MCL Model Soup. Tasks include text-to-image (T2I) retrieval
and image-to-text (I2T) retrieval on 5k COCO validation set and 30k Flickr30k dataset.
We use top-1, top-5, and top-10 Recall (R@1, R@5, R@10) as the evaluation metrics.

COCO Flickr30k
Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

OpenAI 56.1 79.5 86.8 35.4 60.1 70.2 48.5 72.6 80.8 28.0 49.3 58.7
MCL MS 60.4 82.4 89.5 42.2 66.9 76.2 52.7 76.6 84.4 36.5 59.0 68.1

A.5 The Computational Cost of MCL

The computational cost of MCL is detailed in Tab. 9, using our largest model in
unimodal (as described in Appendix A.3) and multimodal settings for illustration.
Notably, the fine-tuning cost of the CLIP model is approximately 3% of the
OpenAI pre-training cost in TFLOPs, and the inference cost increases by only
75%.

A.6 Exploring the Number of Trainable Blocks

To assess the impact of varying the number of trainable blocks in the ViT
architecture, we conduct experiments with the last 4, 6 (as detailed in the
main text), and 8 transformer blocks set as trainable. Due to computational
constraints, we focus on the first three stages of MCL. All other settings remained
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Table 9: Computational complexity of MCL models. The training cost is evaluated
by TFLOPs, Wall Clock Time (WCT), and TFLOPS. Inference cost is evaluated by
relative complexity ratio (R) compared to backbone models (i.e. SimCLR ResNet34
and CLIP ViT). WCT is measured on 8 A100 GPUs.

TFLOPs WCT TFLOPS R

MCL SimCLR ResNet34 1.3× 107 30h 1.6× 102 300%
MCL CLIP ViT 1.8× 108 32h 1.6× 103 175%

consistent with those described in the main text. As summarized in Tab. 10,
configuring 4 blocks as trainable results in an average score of 28.1, surpassing the
6-block configuration, which achieves a 27.4 average score. However, extending to 8
trainable blocks decreases the average score to 25.9. Despite these variations, MCL
consistently improves performance compared to the vanilla OpenAI pretrained
ViT CLIP, which scores an average of 20.0.

Table 10: Performance comparison of MCL-tuned ViT CLIP models with different
numbers of trainable blocks on the MMVP benchmark. “S0” denotes the original
OpenAI pre-trained ViT CLIP model. “S1” and “S2” denote Stage 1 and Stage 2. “MCL”
represents the results derived from concatenating representations across the three stages.

Trainable
Blocks O&D PSF S&C Q&C P&R C&A S&P Texts V&P Average

- S0 26.7 13.3 26.7 6.7 6.7 40.0 26.7 13.3 20.0 20.0

4
S1 0.0 20.0 40.0 20.0 6.7 73.3 26.7 6.7 13.3 23.0
S2 20.0 20.0 40.0 13.3 20.0 73.3 26.7 0.0 20.0 25.9
MCL 13.3 33.3 60.0 20.0 13.3 73.3 13.3 6.7 20.0 28.1

6
S1 13.3 33.3 66.7 26.7 13.3 53.3 20.0 13.3 26.7 29.6
S2 0.0 13.3 46.7 40.0 6.7 53.3 20.0 13.3 20.0 23.7
MCL 6.7 13.3 53.3 26.7 13.3 66.7 40.0 0.0 26.7 27.4

8
S1 13.3 20.0 46.7 6.7 13.3 66.7 20.0 20.0 20.0 25.2
S2 6.7 33.3 40.0 0.0 13.3 53.3 6.7 13.3 20.0 20.7
MCL 13.3 33.3 33.3 13.3 6.7 60.0 26.7 20.0 26.7 25.9

A.7 Clustering Analysis

In this section, we explore the clustering dynamics observed during the training of
ViT CLIP models using the MCL approach, as detailed in Section 5.4 of the main
text. We begin by examining the Adjusted Mutual Information (AMI) [49] scores
computed between the clustering outcomes of subsequent stages in the experi-
ment. AMI scores range from 0, indicating no mutual information (independent
clusterings), to 1, denoting identical clustering results.
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Table 11: AMI scores between K-means clustering outcomes across different MCL
stages. Low AMI scores between distinct stages suggest substantially different clustering
results.

AMI Stage 0 Stage 1 Stage 2

Stage 0 1.00 0.33 0.25
Stage 1 0.33 1.00 0.24
Stage 2 0.25 0.24 1.00

As illustrated in Tab. 11, the low AMI scores between distinct stages highlight
the divergent clustering outcomes, underscoring that each stage learns a unique
feature distribution. This divergence indicates the MCL framework’s effectiveness
in guiding the model to capture distinct, non-redundant features across stages.

Additionally, the distribution of pseudo labels for each stage, depicted in
Fig. 7 (log scale), exhibits a long-tail distribution. This pattern aligns with
characteristic distributions observed in large-scale datasets [1, 46], highlighting
the natural variety of data captured at different stages of MCL.
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Fig. 7: Distribution of pseudo labels across stages 0, 1, and 2, demonstrating the
variation in learned features.


	Learning the Unlearned: Mitigating Feature Suppression in Contrastive Learning

