Learning the Unlearned: Mitigating Feature Suppression in Contrastive Learning
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1. Feature suppression harms contrastive learnin 3. Multistage Contrastive Learning (MCL)
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Feature suppression in unimodal and multimodal contrastive learning.
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Unimodal: Image from Trifeature with Multimodal: Images from MMVP with Performance of the MCL trained SimCLR and the baselines. AMI scores between the K-means Distribution of pseudo labels across different MCL stages.
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Performance of the MCL tuned CLIP models (MMVP benchmark). Linear evaluation accuracy of MCL Visualization of features learned at different MCL stages
r solution |0&D PSF S&C Q&C P&R C&A S&P Texts V&P Average  trained SimCLR on ImageNet. (showing the three most similar samples to the anchor).
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Can you find any difference of the two images.
EYE: The hats on the bear! BRAIN: Any difference EXCEPT FOR the hat?

Performance of the MCL tuned CLIP Model Soup on retrieval.
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Linear evaluation accuracy
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v We “learn” for multiple stages: at each stage, we force the model to learn OpenAl ‘56.1 79.5 86.8 ‘35.4 60.1 70.2 ‘48.5 72.6 80.8 ‘28.0 49.3 58.7
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